]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout répertoire Simulations
[kahina_paper2.git] / paper.tex
index 178bf3b4af5e5bd08abf23f59dae197bf9cdcd36..56685d08879778ac75bac8ec7107459fbbbbe200 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 % argument is your BibTeX string definitions and bibliography database(s)
 %\bibliography{IEEEabrv,../bib/paper}
 %\bibliographystyle{elsarticle-num}
 % argument is your BibTeX string definitions and bibliography database(s)
 %\bibliography{IEEEabrv,../bib/paper}
 %\bibliographystyle{elsarticle-num}
+
+
+
+
+
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[textsize=footnotesize]{todonotes}
+\newcommand{\LZK}[2][inline]{%
+  \todo[color=red!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
+
+
+
+
+
 \begin{document}
 %
 % paper title
 \begin{document}
 %
 % paper title
 % not capitalized unless they are the first or last word of the title.
 % Linebreaks \\ can be used within to get better formatting as desired.
 % Do not put math or special symbols in the title.
 % not capitalized unless they are the first or last word of the title.
 % Linebreaks \\ can be used within to get better formatting as desired.
 % Do not put math or special symbols in the title.
-\title{A parallel implementation of Ehrlich-Aberth algorithm  for root finding of polynomials
-on Multi-GPU with OpenMP/MPI}
+\title{Two parallel implementations of Ehrlich-Aberth algorithm for root finding of polynomials
+on  multiple GPUs with OpenMP and MPI}
 
 
 % author names and affiliations
 
 
 % author names and affiliations
@@ -385,7 +400,9 @@ Fax: (888) 555--1212}}
 % As a general rule, do not put math, special symbols or citations
 % in the abstract
 \begin{abstract}
 % As a general rule, do not put math, special symbols or citations
 % in the abstract
 \begin{abstract}
-The abstract goes here.
+\LZK{J'ai un peu modifié l'abstract. Sinon à revoir pour le degré max des polynômes testés après les tests de raph.}
+Finding roots of polynomials is a very important part of solving real-life problems but it is not so easy for polynomials of high degrees. In this paper, we present two different parallel algorithms of the Ehrlich-Aberth method to find roots of sparse and fully defined polynomials of high degrees. Both algorithms are based on CUDA technology to be implemented on multi-GPU computing platforms but each using different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices to find roots of polynomials of degree up-to 1.4 billion. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming. \LZK{Je n'ai pas bien saisi la dernière phrase.}
+
 \end{abstract}
 
 % no keywords
 \end{abstract}
 
 % no keywords