]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
MAJ des references
[kahina_paper2.git] / paper.tex
index d3016464c09b779da0c0b270061d1e2408719a3c..15031f87ea647951689a5fcccb10ed41a76763e7 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -433,17 +433,17 @@ Finding roots of polynomials is a very important part of solving real-life probl
 
 Finding roots of polynomials of very high degrees arises in many complex problems in various domains such as algebra, biology or physics. A polynomial $p(x)$ in $\mathbb{C}$ in one variable $x$ is an algebraic expression in $x$ of the form
 \begin{equation}
-p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},
+p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},a_0\neq 0. 
 \end{equation}
 where $\{a_i\}_{0\leq i\leq n}$ are complex coefficients and $n$ is a high integer number. If $a_n\neq0$ then $n$ is called the degree of the polynomial. The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called roots of $p(x)$. Let $\{z_i\}_{1\leq i\leq n}$ be the roots of polynomial $p(x)$, then $p(x)$ can be written as :
 \begin{equation}
- p(x)=a_n\displaystyle\prod_{i=1}^n(x-z_i), a_0 a_n\neq 0.
+ p(x)=a_n\displaystyle\prod_{i=1}^n(x-z_i), a_n\neq 0.
 \end{equation}
-\LZK{Pourquoi $a_0a_n\neq 0$ ?}
+\LZK{Pourquoi $a_0a_n\neq 0$ ?: $a_0$ pour la premiere equation et $a_n$ pour la deuxieme equation }
 
 %The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase}
-Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous methods, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial roots. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. Two examples of well-known simultaneous methods for root-finding problem of polynomials are  Durand-Kerner method~\cite{} and Ehrlich-Aberth method~\cite{}.
-\LZK{Pouvez-vous donner des références pour les deux méthodes?}
+Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous methods, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial roots. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. Two examples of well-known simultaneous methods for root-finding problem of polynomials are  Durand-Kerner method~\cite{Durand60,Kerner66} and Ehrlich-Aberth method~\cite{Ehrlich67,Aberth73}.
+\LZK{Pouvez-vous donner des références pour les deux méthodes?, c'est fait}
 
 %The first method of this group is Durand-Kerner method:
 %\begin{equation}
@@ -463,7 +463,7 @@ Most of the numerical methods that deal with the polynomial root-finding problem
 %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
 
 The main problem of the simultaneous methods is that the necessary time needed for the convergence increases with the increasing of the polynomial's degree. Many authors have treated the problem of implementing  simultaneous methods in parallel. Freeman~\cite{Freeman89} implemented and compared Durand-Kerner method, Ehrlich-Aberth method and another method of the fourth order of convergence proposed by Farmer and Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83} often diverges, but the first two methods (Durand-Kerner and Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman and Bane~\cite{Freemanall90} considered asynchronous algorithms in which each processor continues to update its approximations even though the latest values of other approximations $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods of parallelization for a shared memory architecture with OpenMP and for a distributed memory one with MPI. They are able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with OpenMP and 135 seconds with MPI only by using 8 personal computers and 2 communications per iteration. The authors showed an interesting speedup comparing to the sequential implementation which takes up-to 3,300 seconds to obtain same results.
-\LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP}
+\LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP: Rep: c'est MPI seulement}
 
 Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
 
@@ -472,17 +472,19 @@ Very few work had been performed since then until the appearing of the Compute U
 %\LZK{Les contributions ne sont pas définies !!}
 
 In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA/MPI and CUDA/OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include:
-\LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres?}
+\LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres? the Ehrlich-Aberth have very good convergence  and it is suitable to be implemented in parallel computers.}
  \begin{itemize}
+ \item An improvements for the Ehrlich-Aberth method using the exponential logarithm in order to be able to solve sparse and full polynomial of degree up to 1, 000, 000.
+ \item A parallel implementation of Ehrlich-Aberth method on single GPU with CUDA.
 \item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a shared memory using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory.
 \item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a distributed memory using MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
  \end{itemize}
-\LZK{Pas d'autres contributions possibles?}
+\LZK{Pas d'autres contributions possibles?: j'ai rajouté 2}
 
 %This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.}
 
-The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches.
-\LZK{A revoir toute cette organization}
+The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches. In section\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic. 
+\LZK{A revoir toute cette organization: je viens de la revoir}
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -524,7 +526,7 @@ CUDA (Compute Unified Device Architecture) is a parallel computing architecture
 \section{The Ehrlich-Aberth algorithm on a GPU}
 \label{sec3}
 
-\subsection{The EA method}
+\subsection{The Ehrlich-Aberth method}
 %A cubically convergent iteration method to find zeros of
 %polynomials was proposed by O. Aberth~\cite{Aberth73}. The
 %Ehrlich-Aberth (EA is short) method contains 4 main steps, presented in what
@@ -616,22 +618,29 @@ CUDA (Compute Unified Device Architecture) is a parallel computing architecture
 %\label{fig:03}
 %\end{figure}
 
-the Ehrlich-Aberth method is an iterative  method, contain 4 steps, start from the initial approximations of all the roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator~\cite{,}, wich will make it possible to converge to the roots solution, provided that all the root are different.
+%the Ehrlich-Aberth method is an iterative  method, contain 4 steps, start from the initial approximations of all the roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator~\cite{,}, witch will make it possible to converge to the roots solution, provided that all the root are different.
 
+The Ehrlich-Aberth method is a simultaneous method~\cite{} using the following iteration
 \begin{equation}
 \label{Eq:EA1}
 EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
 \end{equation}
 
- At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots are lower than a fixed value $\xi$ 
+contain 4 steps, start from the initial approximations of all the roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer~\cite{Gugg86} method to assure the distinction of the initial vector roots,
+
+ than in step 3 we apply the the iterative function based on the Newton's method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03}, wich will make it possible to converge to the roots solution, provided that all the root are different.
+
+
+ At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots are lower than a fixed value $\xi$. 
 
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
 \end{equation}
-
-\subsection{EA parallel implementation on CUDA}
+\subsection{Improving Ehrlich-Aberth method}
+......
+\subsection{Ehrlich-Aberth parallel implementation on CUDA}
 We introduced three paradigms of parallel programming. Our objective consists in implementing a root finding polynomial algorithm on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be investigated.