]> AND Private Git Repository - kahina_paper2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections I et II
authorzianekhodja <zianekhodja.lilia@gmail.com>
Wed, 6 Jan 2016 21:42:37 +0000 (22:42 +0100)
committerzianekhodja <zianekhodja.lilia@gmail.com>
Wed, 6 Jan 2016 21:42:37 +0000 (22:42 +0100)
paper.tex

index 41bdf69f57eaa29dda38df583b9cf727e28d1161..be7faa07dde26b4c5261bc87c48c1674eccf17c2 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -400,7 +400,8 @@ Fax: (888) 555--1212}}
 % in the abstract
 \begin{abstract}
 \LZK{J'ai un peu modifié l'abstract. Sinon à revoir pour le degré max des polynômes après les tests de raph.}
 % in the abstract
 \begin{abstract}
 \LZK{J'ai un peu modifié l'abstract. Sinon à revoir pour le degré max des polynômes après les tests de raph.}
-Finding roots of polynomials is a very important part of solving real-life problems but it is not so easy for polynomials of high degrees. In this paper, we present two different parallel algorithms of the Ehrlich-Aberth method to find roots of sparse and fully defined polynomials of high degrees. Both algorithms are based on CUDA technology to be implemented on multi-GPU computing platforms but each using different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices to find roots of polynomials of degree up-to 1.4 billion. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming. \LZK{Je n'ai pas bien saisi la dernière phrase.}
+Finding roots of polynomials is a very important part of solving real-life problems but it is not so easy for polynomials of high degrees. In this paper, we present two different parallel algorithms of the Ehrlich-Aberth method to find roots of sparse and fully defined polynomials of high degrees. Both algorithms are based on CUDA technology to be implemented on multi-GPU computing platforms but each using different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices to find roots of polynomials of degree up-to 1.4 billion. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming. 
+\LZK{Je n'ai pas bien saisi la dernière phrase.}
 \end{abstract}
 
 % no keywords
 \end{abstract}
 
 % no keywords
@@ -427,60 +428,60 @@ Finding roots of polynomials is a very important part of solving real-life probl
 %p(x)=\sum_{i=0}^{n}{a_ix^i}.
 %\end{equation}
 %\LZK{Dans ce cas le polynôme a $n+1$ coefficients et non pas $n$!}
 %p(x)=\sum_{i=0}^{n}{a_ix^i}.
 %\end{equation}
 %\LZK{Dans ce cas le polynôme a $n+1$ coefficients et non pas $n$!}
-The issue of finding the roots of polynomials of very high
-degrees arises in many complex problems in various fields,
-such as algebra, biology, finance, physics or climatology [1].
-In algebra for example, finding eigenvalues or eigenvectors of
-any real/complex matrix amounts to that of finding the roots
-of the so-called characteristic polynomial.
-
-The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called zeros or roots of $p$. If zeros are $\{\alpha_{i}\}_{1\leq i\leq n}$, then $p(x)$ can be written as :
-\begin{equation}
- p(x)=\sum_{i=0}^{n}{a_ix^i}=a_n\prod_{i=1}^n(x-\alpha_i), a_0 a_n\neq 0.
-\end{equation}
-%\LZK{C'est $a_n\neq 0$ (polynôme de degré $n$) et non pas $a_0 a_n\neq 0$, non?}
-%\LZK{Est-ce $\alpha_i$ sont les $z_i$ définis dans la suite du papier?}
 
 
-%The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase}
-Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous ones, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial zeros. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method:
+%The issue of finding the roots of polynomials of very high degrees arises in many complex problems in various fields, such as algebra, biology, finance, physics or climatology [1]. In algebra for example, finding eigenvalues or eigenvectors of any real/complex matrix amounts to that of finding the roots of the so-called characteristic polynomial.
+
+Finding roots of polynomials of very high degrees arises in many complex problems in various domains such as algebra, biology or physics. A polynomial $p(x)$ in $\mathbb{C}$ in one variable $x$ is an algebraic expression in $x$ of the form
 \begin{equation}
 \begin{equation}
-\label{DK}
- DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, \ldots, n,
+p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},
 \end{equation}
 \end{equation}
-where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the iteration $k$. Another method discovered by Borsch-Supan~\cite{ Borch-Supan63} and also described by Ehrlich~\cite{Ehrlich67} and Aberth~\cite{Aberth73} uses a different iteration form as follows:
-%%\begin{center}
+where $\{a_i\}_{0\leq i\leq n}$ are complex coefficients and $n$ is a high integer number. If $a_n\neq0$ then $n$ is called the degree of the polynomial. The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called roots of $p(x)$. Let $\{z_i\}_{1\leq i\leq n}$ be the roots of polynomial $p(x)$, then $p(x)$ can be written as :
 \begin{equation}
 \begin{equation}
-\label{Eq:EA}
- EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, \ldots, n,
+ p(x)=a_n\displaystyle\prod_{i=1}^n(x-z_i), a_0 a_n\neq 0.
 \end{equation}
 \end{equation}
+\LZK{Pourquoi $a_0a_n\neq 0$ ?}
+
+%The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase}
+Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous methods, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial roots. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. Two examples of well-known simultaneous methods for root-finding problem of polynomials are  Durand-Kerner method~\cite{} and Ehrlich-Aberth method~\cite{}.
+\LZK{Pouvez-vous donner des références pour les deux méthodes?}
+
+%The first method of this group is Durand-Kerner method:
+%\begin{equation}
+%\label{DK}
+% DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, \ldots, n,
+%\end{equation}
+%where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the iteration $k$. Another method discovered by Borsch-Supan~\cite{ Borch-Supan63} and also described by Ehrlich~\cite{Ehrlich67} and Aberth~\cite{Aberth73} uses a different iteration form as follows:
+%%\begin{center}
+%\begin{equation}
+%\label{Eq:EA}
+ %EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, \ldots, n,
+%\end{equation}
 %%\end{center}
 %%\end{center}
-where $p'(z)$ is the polynomial derivative of $p$ evaluated in the point $z$.
+%where $p'(z)$ is the polynomial derivative of $p$ evaluated in the point $z$.
 
 %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
 %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
 
 
 %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
 %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
 
-The main problem of the simultaneous methods is that the necessary time needed for the convergence increases with the increasing of the polynomial's degree. Many authors have treated the problem of implementing  simultaneous methods in parallel. Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order of convergence proposed by Farmer and Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83} often diverges, but the first two methods (DK and EA) have a speed-up equals to 5.5. Later, Freeman and Bane~\cite{Freemanall90} considered asynchronous algorithms in which each processor continues to update its approximations even though the latest values of other $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods of parallelization for a shared memory architecture with \textit{OpenMP} and for a distributed memory one with \textit{MPI}. They are able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with \textit{OpenMP} and 135 seconds with \textit{MPI} only by using 8 personal computers and 2 communications per iteration. 
-\LZK{je suppose que c'est pour la version mpi (only by using 8 personal computers and 2 communications per iteration). A t on utilisé le même nombre de procs pour les deux versions openmp et mpi} The authors showed an interesting speedup comparing to the sequential implementation that takes up-to 3,300 seconds to obtain same results.
+The main problem of the simultaneous methods is that the necessary time needed for the convergence increases with the increasing of the polynomial's degree. Many authors have treated the problem of implementing  simultaneous methods in parallel. Freeman~\cite{Freeman89} implemented and compared Durand-Kerner method, Ehrlich-Aberth method and another method of the fourth order of convergence proposed by Farmer and Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83} often diverges, but the first two methods (Durand-Kerner and Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman and Bane~\cite{Freemanall90} considered asynchronous algorithms in which each processor continues to update its approximations even though the latest values of other approximations $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods of parallelization for a shared memory architecture with OpenMP and for a distributed memory one with MPI. They are able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with OpenMP and 135 seconds with MPI only by using 8 personal computers and 2 communications per iteration. The authors showed an interesting speedup comparing to the sequential implementation which takes up-to 3,300 seconds to obtain same results.
+\LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP}
 
 
-Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche and al~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
+Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
 
 %Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. We consider two architectures: shared memory and distributed memory computers. The first parallel algorithm is implemented on shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
 %\LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?}
 %\LZK{Les contributions ne sont pas définies !!}
 
 
 %Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. We consider two architectures: shared memory and distributed memory computers. The first parallel algorithm is implemented on shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
 %\LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?}
 %\LZK{Les contributions ne sont pas définies !!}
 
-In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. Our (CUDA MPI)and (CUDA OpenMP) codes is the first implementation of Ehrlich-Aberth algorithm with multiple GPUs for finding roots polynomial. Our major contributions include:
-\begin{itemize}
-\item The parallel implementation of EA algorithm on multi-GPU platform with shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory.
-\item The parallel implementation of EA algorithm on multi-GPU platform with uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
+In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA/MPI and CUDA/OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include:
+\LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres?}
+ \begin{itemize}
+\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a shared memory using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory.
+\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a distributed memory using MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
  \end{itemize}
  \end{itemize}
-\LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?}
-\LZK{Les contributions ne sont pas définies !!}
- ? %This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.}
+\LZK{Pas d'autres contributions possibles?}
 
 
-The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches.
+%This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.}
 
 
+The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches.
 \LZK{A revoir toute cette organization}
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \LZK{A revoir toute cette organization}
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -488,9 +489,7 @@ The paper is organized as follows. In Section~\ref{sec2} we present three differ
  
 \section{Parallel programming models}
 \label{sec2}
  
 \section{Parallel programming models}
 \label{sec2}
-\LZK{Toute cette section a été réécrite. Donc à relire et à améliorer si possible.}
-
-Our objective consists in implementing a root-finding polynomial algorithm on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We investigate two parallel paradigms: OpenMP and MPI. In this case, the GPU indices are defined according to the identifiers of the OpenMP threads or the ranks of the MPI processes. In this section we present the parallel programming models: OpenMP, MPI and CUDA.
+Our objective consists in implementing a root-finding algorithm of polynomials on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We investigate two parallel paradigms: OpenMP and MPI. In this case, the GPU indices are defined according to the identifiers of the OpenMP threads or the ranks of the MPI processes. In this section we present the parallel programming models: OpenMP, MPI and CUDA.
  
 \subsection{OpenMP}
 %Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity~\cite{openmp13}. OpenMP is a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allocated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performance in large scale applications. Although usage of OpenMP  threads and managed data explicitly done with MPI can be considered, this approcache undermines the advantages of OpenMP.
  
 \subsection{OpenMP}
 %Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity~\cite{openmp13}. OpenMP is a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allocated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performance in large scale applications. Although usage of OpenMP  threads and managed data explicitly done with MPI can be considered, this approcache undermines the advantages of OpenMP.
@@ -505,7 +504,7 @@ Our objective consists in implementing a root-finding polynomial algorithm on mu
 %Sequential natively. Threads share some or all of the available memory and can
 %have private memory areas [6].
 
 %Sequential natively. Threads share some or all of the available memory and can
 %have private memory areas [6].
 
-OpenMP (Open Multi-processing) is an application programming interface for shared memory parallel programming~\cite{openmp13}. It is a portable approach based on the multithreading designed for shared memory computers, where a master thread forks a number of slave threads which execute blocks of code in parallel. An OpenMP program alternates sequential regions and parallel regions of code, where the sequential regions are executed by the master thread and the parallel ones may be executed by multiple threads. During the execution of an OpenMP program the threads communicate their data (read and modified) in the shared memory. One advantage of OpenMP is the global view of the memory address space of an application. This allows relatively a fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performances in large scale-applications. 
+OpenMP (Open Multi-processing) is an application programming interface for parallel programming~\cite{openmp13}. It is a portable approach based on the multithreading designed for shared memory computers, where a master thread forks a number of slave threads which execute blocks of code in parallel. An OpenMP program alternates sequential regions and parallel regions of code, where the sequential regions are executed by the master thread and the parallel ones may be executed by multiple threads. During the execution of an OpenMP program the threads communicate their data (read and modified) in the shared memory. One advantage of OpenMP is the global view of the memory address space of an application. This allows relatively a fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performances in large scale-applications. 
 
 \subsection{MPI} 
 %The MPI (Message Passing Interface) library allows to create computer programs that run on a distributed memory architecture. The various processes have their own environment of execution and execute their code in a asynchronous way, according to the MIMD model  (Multiple Instruction streams, Multiple Data streams); they communicate and synchronize by exchanging messages~\cite{Peter96}. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a multi-thread programming environment like OpenMP or Pthreads.
 
 \subsection{MPI} 
 %The MPI (Message Passing Interface) library allows to create computer programs that run on a distributed memory architecture. The various processes have their own environment of execution and execute their code in a asynchronous way, according to the MIMD model  (Multiple Instruction streams, Multiple Data streams); they communicate and synchronize by exchanging messages~\cite{Peter96}. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a multi-thread programming environment like OpenMP or Pthreads.