-This method contains 4 steps. The first step consists of the initial approximations of all the roots of the polynomial.\LZK{Pas compris??}
-The second step initializes the solution vector $Z$ using the Guggenheimer method~\cite{Gugg86} to ensure the distinction of the initial vector roots.\LZK{Quelle est la différence entre la 1st step et la 2nd step? Que veut dire " to ensure the distinction of the initial vector roots"?}
-In step 3, the iterative function based on the Newton's method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03} is applied. With this step the computation of roots will converge, provided that all roots are different.\LZK{On ne peut pas expliquer un peu plus comment? Donner des formules comment elle se base sur la méthode de Newton et de l'opérateur de Weiestrass?}
+This method contains 4 steps. The first step consists in the
+initializing the polynomial.\LZK{Pas compris?? \RC{changé}}.
+The second step initializes the solution vector $Z$ using the
+Guggenheimer method~\cite{Gugg86} to ensure that initial roots are all
+distinct from each other. \LZK{Quelle est la différence entre la 1st
+ step et la 2nd step? Que veut dire " to ensure the distinction of
+ the initial vector roots"? \RC{reformulé}}
+In step 3, the iterative function based on the Newton's
+method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03} is
+applied. In our case, the Ehrlich-Aberth is applied as in (\ref{Eq:EA1}).
+Iterations of the EA method will converge to the roots of the
+considered polynomial.\LZK{On ne peut pas expliquer un peu plus
+ comment? Donner des formules comment elle se base sur la méthode de
+ Newton et de l'opérateur de Weiestrass? \RC{amélioré}}