]> AND Private Git Repository - loba-papers.git/blob - loba-besteffort/loba-besteffort.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
[sharelatex-git-integration Best effort strategy and virtual load for asynchronous...
[loba-papers.git] / loba-besteffort / loba-besteffort.tex
1 \documentclass[preprint]{elsarticle}
2
3 \usepackage[utf8]{inputenc}
4 \usepackage[T1]{fontenc}
5
6 %\usepackage{newtxtext}
7 %\usepackage[cmintegrals]{newtxmath}
8 \usepackage{mathptmx,helvet,courier}
9
10 \usepackage{amsmath}
11 \usepackage{graphicx}
12 \usepackage{url}
13 \usepackage[ruled,lined]{algorithm2e}
14
15 %%% Remove this before submission
16 \newcommand{\FIXMEmargin}[1]{%
17   \marginpar{\textbf{[FIXME]} {\footnotesize #1}}}
18 \newcommand{\FIXME}[2][]{%
19   \ifx #2\relax\relax \FIXMEmargin{#1}%
20   \else \textbf{$\triangleright$\FIXMEmargin{#1}~#2}\fi}
21
22 \newcommand{\abs}[1]{\lvert#1\rvert} % \abs{x} -> |x|
23
24 \newenvironment{algodata}{%
25   \begin{tabular}[t]{@{}l@{:~}l@{}}}{%
26   \end{tabular}}
27
28 \newcommand{\VAR}[1]{\textit{#1}}
29
30 \newcommand{\besteffort}{\emph{best effort}}
31 \newcommand{\makhoul}{\emph{naive}}
32
33 \begin{document}
34
35 \begin{frontmatter}
36
37 \journal{Parallel Computing}
38
39 \title{Best effort strategy and virtual load for\\
40   asynchronous iterative load balancing}
41
42 \author{Raphaël Couturier}
43 \ead{raphael.couturier@univ-fcomte.fr}
44
45 \author{Arnaud Giersch\corref{cor}}
46 \ead{arnaud.giersch@univ-fcomte.fr}
47
48 \author{Mourad Hakem}
49 \ead{mourad.hakem@univ-fcomte.fr}
50
51 \address{%
52   FEMTO-ST Institute, Univ Bourgogne Franche-Comté, Belfort, France}
53
54 \cortext[cor]{Corresponding author.}
55
56 \begin{abstract}
57   Most of the time, asynchronous load balancing algorithms have extensively been
58   studied in a theoretical point of view. The Bertsekas and Tsitsiklis'
59   algorithm~\cite
60   %[section~7.4]
61   {bertsekas+tsitsiklis.1997.parallel} is undeniably 
62   the most well known algorithm for which the asymptotic convergence proof is given. 
63   From a
64   practical point of view, when a node needs to balance a part of its load to
65   some of its neighbors, the algorithm's description is unfortunately too succinct, and no details are given on what is really sent and how the load balancing decisions are taken. In this paper, we
66   propose a new strategy called \besteffort{} which tries to balance the load
67   of a node to all its less loaded neighbors while ensuring that all the nodes
68   involved by the load balancing phase have the same amount of load. Moreover, since 
69   asynchronous iterative algorithms are less sensitive to communications delays 
70   and their variations, both load transfer and load information messages are dissociated. 
71   To speedup the convergence time of the load balancing process, we propose {\it a clairvoyant virtual load} heuristic which allows 
72   %asynchronous iterative algorithms, in which an asynchronous load balancing
73   %algorithm is implemented, can dissociate, most of the time, messages concerning
74   %load transfers and message concerning load information.  In order to increase
75   %the converge of a load balancing algorithm, we propose a simple heuristic
76   %called \emph{virtual load}. This heuristic allows 
77   a node that receives a load
78   information message to integrate the future virtual load (if any) in its load's list, even if the load has not been received yet. This leads to have predictive snapshots of nodes' loads.  Consequently the node sends a real part of its load to some of
79   its neighbors taking into account the virtual load it will receive in the subsequent time-steps. Based on SimGrid simulator, series of test-bed scenarios are considered and many QoS metrics are evaluated to show the usefulness of the proposed algorithm.  %In order to validate our approaches, we have defined a
80  % simulator based on SimGrid which allowed us to conduct many experiments.
81 \end{abstract}
82
83 % \begin{keywords}
84 %   %% keywords here, in the form: keyword \sep keyword
85 % \end{keywords}
86
87 \end{frontmatter}
88
89 \section{Introduction}
90
91 Load  balancing algorithms  are  widely used  in  parallel and  distributed
92 applications to achieve high performances in terms of response time, throughput and resources usage. They play an important role and arise in various fields ranging from parallel and distributed 
93 computing systems to wireless sensor networks (WSN). 
94 The objective of load balancing is to orchestrate the distribution of the global workload so that 
95 the load difference between the computational resources of the network is 
96 minimized as low as possible. Unfortunately, this problem is known to be {\bf NP-Hard} in its 
97 general forms and heuristics are required to achieve sub-optimal solutions but in 
98 polynomial time complexity. 
99
100 In this paper, we focus on asynchronous load balancing of non negative real numbers of {\it divisible loads}
101 in homogeneous distributed systems. Loads can be divided in arbitrary {\it fine-grain} parallel parts size 
102 that can be processed independently of each other. This model of divisible loads arise in 
103 a wide range of real-world applications. Common examples among many, include signal processing, 
104 feature extraction and edge detection in image processing, records search in a huge databases, 
105 average consensus in WSN, pattern search in Big data and so on. % c'est pout toi raphael ;-)
106
107 In the literature, the problem of load balancing has been formulated and studied in various ways. The first pioneering work is due to Bertsekas  and Tsitsiklis~\cite{bertsekas+tsitsiklis.1997.parallel}. Under some specific hypothesis and {\it ping-pong} awareness conditions (see section~\ref{sec.bt-algo} for more details), an asymptotic convergence proof is derived. This algorithm has been borrowed and adapted in many works. For instance, in~\cite{CortesRCSL02} a static load balancing (called DASUD) for non negative integer number of divisible loads in arbitrary networks topologies is investigated. The term {\it "static"} stems from the fact that no loads are added or consumed during the load balancing process. The theoretical correctness proofs of the convergence property are given. Some generalizations of the same authors' own work for partially asynchronous discrete load balancing model are presented in~\cite{cedo+cortes+ripoll+al.2007.convergence}. The authors prove that the algorithm's convergence is finite and bounded by the straightforward network's diameter of the global equilibrium threshold in the network. In~\cite{bahi+giersch+makhoul.2008.scalable}, a fault tolerant communication version is addressed to deal with average consensus in wireless sensor networks. The objective is to have all nodes converged to the average of their initial measurements based only on nodes' local information. A slight adaptation is also considered  in~\cite{BahiCG10} for dynamic networks with bounded delays asynchronous diffusion. The dynamical aspect stands at the communication level as links between the network's resources may be intermittent.
108
109
110
111
112 %in  order to  reduce the  execution times. They  can be  applied in
113 %different scientific  fields from high  performance computation to  micro sensor
114 %networks.   In a distributed context (i.e. without centralization), they are  iterative by  nature.
115 %In  literature many  kinds  of load
116 %balancing  algorithms  have been  studied.   They  can  be classified  according
117 %different  criteria:   centralized  or  decentralized,  in   static  or  dynamic
118 %environment,  with  homogeneous  or  heterogeneous load,  using  synchronous  or
119 %asynchronous iterations, with  a static topology or a  dynamic one which evolves
120 %during time.  In  this work, we focus on  asynchronous load balancing algorithms
121 %where computing nodes  are considered homogeneous and with  homogeneous load with
122 %no external  load. 
123
124
125 %In  this context, Bertsekas  and Tsitsiklis have  proposed an
126 %algorithm which is definitively a reference for many works. In their work, they
127 %proved that under classical  hypotheses of asynchronous iterative algorithms and
128 %a  special  constraint   avoiding  \emph{ping-pong}  effect,  an  asynchronous
129 %iterative algorithm  converges to  the uniform load  distribution. This  work has
130 %been extended by many authors. For example, Cortés et al., with
131 %DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous}, propose a
132 %version working with integer load.  This work was later generalized by
133 %the same authors in \cite{cedo+cortes+ripoll+al.2007.convergence}.
134 %\FIXME{Rajouter des choses ici.  Lesquelles ?}
135
136 Although  Bertsekas  and Tsitsiklis'  describe  the necessary conditions to
137 ensure the algorithm's convergence,  there is no indication or any strategy to really implement
138 the load distribution. In other word, a node  can send some amount of its load to one
139 or   many  of   its  neighbors   while  all   the  convergence   conditions  are
140 followed. Consequently,  we propose a  new strategy called  \besteffort{}
141 that tries to balance the load of  a node to all its less loaded neighbors while
142 ensuring that all the nodes involved in the load balancing phase have the same
143 amount of  load.  Moreover, %when real-world asynchronous  applications are considered,
144 %using  asynchronous load  balancing  algorithms  can  reduce   the  execution
145 %times. 
146 most of the times, it is simpler to dissociate load information messages
147 from  data  migration  messages.  Former  ones  allow  a  node to  inform  its
148 neighbors about its  current load. These messages are in fact very small and can be sent 
149 often and very quickly.  For example, if a computing iteration takes  a significant times
150 (ranging from seconds to minutes), it is possible to send a new load information
151 message to each involved neighbor at each iteration. Then the load is sent, but the reception may take time when the amount of load is huge and when communication links are slow.  Depending on the application, it may have
152 sense or not  that nodes try to balance  a part of their load  at each computing
153 iteration. But the time to transfer a load message from a node to another one is
154 often much more longer that the  time to transfer a load information message. So,
155 when a node is notified 
156 %receives the information  
157 that later it will receive a data message,
158 it can take this information into account in its load's queue list for preventive purposes.
159 %and it can consider that its new load is larger.   
160 Consequently, it can  send a part  of its predictive
161 %real 
162 load to some  of its
163 neighbors if required. We call this trick the \emph{clairvoyant virtual load} transfer mechanism.
164
165 \medskip 
166 The main contributions and novelties of our work are summarized in the following section. 
167
168 \subsection{Our contributions}
169
170
171 \begin{itemize}
172 \item We propose a {\it best effort strategy} which proceeds greedily to achieve efficient local neighborhoods equilibrium. Upon local load imbalance detection, a {\it significant amount} of load is moved from a highly loaded node (initiator) to less loaded neighbors.     
173
174 \item Unlike earlier works, we use a new concept of virtual loads transfers which allows nodes to predict the future loads they will receive in the subsequent iterations. 
175 This leads to a noticeable speedup of the global convergence time of the load balancing process.  
176
177 \item We use SimGrid simulator which is known to be able to characterize and modelize realistic models of computation and communication in different types of platforms. We show that taking into account both loads transfers' costs and network contention is essential and has a real impact on the quality of the load balancing performances. 
178
179 %\item We improve the straightforward network's diameter bound of the global equilibrium threshold in the network. % not sure, it depends on the remaining time before the paper submission ...
180 \end{itemize}
181
182
183 %{\bf The contributions of this paper are the following:}
184 %\begin{itemize}
185 %\item We propose a new strategy to improve the distribution of the
186 %load and a simple but efficient trick that also improves the load
187 %balancing.
188 %\item we have conducted many simulations with SimGrid in order to
189 %validate that our improvements are really efficient. Our simulations consider
190 %that in order to send a message, a latency delays the sending and according to
191 %the network performance and the message size, the time of the reception of the
192 %message also varies.
193 %\end{itemize}
194
195 The reminder of the paper is organized as follows. 
196 In Section~\ref{sec.related.works}, we review the relevant related works in load balancing. Section~\ref{sec.bt-algo} describes the
197 Bertsekas and Tsitsiklis' asynchronous load balancing algorithm. %Moreover, we  present a possible problem in the convergence conditions. 
198 Section~\ref{sec.besteffort} presents the best effort strategy which provides
199 efficient local loads equilibrium. This strategy will be compared with other existing competitor ones, presented in Section~\ref{sec.other}.  In
200 Section~\ref{sec.virtual-load}, the clairvoyant virtual load scheme is proposed to speedup the convergence time of the load balancing process.
201 We provide in Section~\ref{sec.simulations}, a comprehensive set of numerical results that exhibit the usefulness of our proposals when we deal with realistic models of computation and communication. Finally, we give some concluding remarks in Section~\ref{conclusions-remarks}.
202
203
204 \section{Related works}
205 \label{sec.related.works}
206 In this section, we fairly review the relevant techniques proposed in the literature to tackle the problem of load balancing in a general context of distributed systems. 
207
208
209 In order to achieve the load balancing of cloud data centers, a LB technique based on Bayes theorem and Clustering is proposed in~\cite{zhao2016heuristic}. The main idea of this approach is that, the Bayes theorem is combined with the clustering process to obtain the optimal clustering set of physical target hosts leading to the overall load balancing equilibrium.  
210
211
212 Bidding is a market-technique for task scheduling and load balancing in distributed systems
213 that characterize a set of negotiation rules for users' jobs. For instance, Izakian et al~\cite{IzakianAL10} formulate a double auction mechanism for tasks-resources matching in grid computing environments where resources are considered as provider agents and users as consumer ones. Each entity participates in the network independently and makes autonomous decisions. A provider agent determines its bid price based on its current workload, and each consumer agent defines its bid value based on two main parameters: average remaining time and remaining resources for bidding. Based on JADE simulator, the proposed algorithm exhibits better performances in terms of successful execution rates, resource utilization rates and fair profit allocation.
214
215
216 Choi et al.~\cite{ChoiBH09} address the problem of robust task allocation in arbitrary networks. The proposed
217 approaches combine bidding approach for task selection and consensus procedure scheme for
218 decentralized conflict resolution. The developed algorithms are proven to converge to a conflict-free assignment in
219 both single and multiple task assignment problem.
220
221
222 An online stochastic dual gradient LB algorithm which is called DGLB is proposed in~\cite{chen2017dglb}. The authors deal with both workload and energy management for cloud networks consisting of multiple geo-distributed mapping nodes and data Centers. To enable online distributed implementation, tasks are decomposed both across time and space by leveraging a dual decomposition approach. Experimental results corroborate the merits of the proposed algorithm.
223
224
225 In~\cite{tripathi2017non} a LB algorithm based on game theory is proposed for distributed data centers. The authors formulate the LB problem as a non-cooperative game among front-end proxy servers and characterize the structure of Nash equilibrium. Based on the obtained Nash equilibrium structure, they derive a LB algorithm for computing the Nash equilibrium. They show through simulations that the proposed algorithm ensures fairness among the users and good average latency across all client regions.
226
227
228 A hybrid task scheduling and load balancing dependent and independent tasks for master-slaves platforms is addressed in~In~\cite{liu2017dems}. To minimize the response time of the submitted jobs, the proposed algorithm which is called DeMS is splitted in three stages: i) communication overhead reduction between masters and slaves,  ii) task migration to keep the workload balanced iii) and precedence task graphs partitioning. 
229
230
231 In~\cite{GrosuC05}, the authors formulate the load balancing problem as a non-cooperative game among users. They use the Nash equilibrium as the solution of this game to optimize the response time of all jobs in the entire system. The proposed scheme guarantees the optimal task allocation for each user with low time complexity. 
232
233
234 A game theoretic approach to tackle the static load balancing problem is also investigated in~\cite{PenmatsaC11}. To provide fairness to all users in  the system, the load balancing problem is formulated as a non-cooperative game among the users to minimize the response time of the submitted users' jobs. As in~\cite{GrosuC05}, the authors use the concept of Nash equilibrium as the solution of a non-cooperative game. Simulations results show that the proposed scheme perform near optimal solutions compared to other existing techniques in terms of fairness.
235
236
237 Cybenko~\cite{Cybenko89} propose a {\it diffusion} approach for hypercube multiprocessor networks. 
238 The author targets both static and dynamic random models of work distribution. 
239 The convergence proof is derived based on the {\it eigenstructure} of the 
240 iteration matrices that arise in load balancing of equal amount of
241 computational works. A static load balancing for  both synchronous and asynchronous ring networks is addressed in~\cite{GehrkePR99}. The authors assume that at any time step, at most one token (units of load) can be transmitted along any edge of the ring and no tokens are created during the balancing phase. They show that for every initial token distribution, the proposed algorithm converges to the stable equilibrium with tighter linear bounds of time step-complexity.
242
243 %\medskip 
244 %{\bf ****** 2 references will be added ******}
245
246 \section{Bertsekas  and Tsitsiklis' asynchronous load balancing algorithm}
247 \label{sec.bt-algo}
248
249 In this section, we present a brief description of Bertsekas and Tsitsiklis' algorithm~\cite{bertsekas+tsitsiklis.1997.parallel} using its original notations. 
250 A network is modeled as a connected undirected graph $G=(N,A)$, where $N$ is set 
251 of processors and $A$ is a set of communication links. The processors are 
252 labeled $i = 1,...,n$, and a link between processors $i$ and
253 $j$ is denoted by $(i, j)\in A$. In this work, we
254 consider that  processors are  homogeneous for sake of simplicity.
255 It is easily extendable to the case of heterogeneous platforms 
256 by scaling the processor's load by its computing power~\cite{ElsMonPre02}.
257 %In  order  prove  the  convergence  of  asynchronous  iterative  load  balancing
258 %Bertsekas         and        Tsitsiklis         proposed         a        model
259 %in~\cite{bertsekas+tsitsiklis.1997.parallel}.   Here we  recall  some notations.
260 %Consider  that  $N={1,...,n}$  processors   are  connected  through  a  network.
261 %Communication links  are represented by  a connected undirected  graph $G=(N,A)$
262 %where $A$ is the set of links connecting different processors. 
263 %In this work, we
264 %consider that  processors are  homogeneous for sake  of simplicity. It  is quite
265 %easy to tackle the  heterogeneous case~\cite{ElsMonPre02}. 
266 Load of processor $i$
267 at  time $t$  is  represented  by $x_i(t)\geq  0$.   Let $V(i)$  be  the set  of
268 neighbors of processor  $i$.  Each processor $i$ has an estimate  of the load of
269 each  of its  neighbors $j  \in V(i)$  denoted by  $x_j^i(t)$ and this estimate 
270 may be outdated due to %.  According to
271 asynchronism and communication  delays. 
272 %, this estimate may be  outdated.  
273 %We also
274 %consider that the load is described by a continuous variable.
275 Since we deal with large  {\it fine grain} parallelism of divisible loads, 
276 the processor's load is represented by a continuous variable for notational 
277 convenience.  
278
279 When a processor  sends a part of its  load to one or some of  its neighbors, the
280 transfer takes time to be completed.  Let $s_{ij}(t)$ be the amount of load that
281 processor $i$ has transferred to processor $j$ at time $t$ and let $r_{ij}(t)$ be the
282 amount of  load received by processor $j$  from processor $i$ at  time $t$. Then
283 the amount of load of processor $i$ at time $t+1$ is given by:
284 \begin{equation}
285 x_i(t+1)=x_i(t)-\sum_{j\in V(i)} s_{ij}(t) + \sum_{j\in V(i)} r_{ji}(t)
286 \label{eq.ping-pong}
287 \end{equation}
288
289 \medskip 
290 {\bf ****** je suis arrivé ici ******** la conclusion est déjà écrite ******}
291 \medskip
292
293 Some  conditions are  required to  ensure the  convergence. One  of them  can be
294 called the \emph{ping-pong} condition which specifies that:
295 \begin{equation}
296 x_i(t)-\sum _{k\in V(i)} s_{ik}(t) \geq x_j^i(t)+s_{ij}(t)
297 \end{equation}
298 for any  processor $i$ and any  $j \in V(i)$ such  that $x_i(t)>x_j^i(t)$.  This
299 condition aims  at avoiding a processor  to send a  part of its load  and being
300 less loaded after that.
301
302 Nevertheless,  we  think that  this  condition may  lead  to  deadlocks in  some
303 cases. For example, if we consider  only three processors and that processor $1$
304 is linked to processor $2$ which is  also linked to processor $3$ (i.e. a simple
305 chain which 3 processors). Now consider we have the following values at time $t$:
306 \begin{align*}
307   x_1(t)   &= 10    \\
308   x_2(t)   &= 100   \\
309   x_3(t)   &= 99.99 \\
310   x_3^2(t) &= 99.99 \\
311 \end{align*}
312 {\bf RAPH, pourquoi il y a $x_3^2$?. Sinon il faudra reformuler la suite, c'est mal dit}
313
314 In this case, processor $2$ can either sends load to processor $1$ or processor
315 $3$.  If it sends load to processor $1$ it will not satisfy condition
316 \eqref{eq.ping-pong} because after the sending it will be less loaded that
317 $x_3^2(t)$.  So we consider that the \emph{ping-pong} condition is probably to
318 strong. Currently, we did not try to make another convergence proof without this
319 condition or with a weaker condition.
320
321 Nevertheless, we conjecture that such a weaker condition exists.  In fact, we
322 have never seen any scenario that is not leading to convergence, even with
323 load-balancing strategies that are not exactly fulfilling these two conditions.
324
325 It may be the subject of future work to express weaker conditions, and to prove
326 that they are sufficient to ensure the convergence of the load-balancing
327 algorithm.
328
329
330
331 \section{Best effort strategy}
332 \label{sec.besteffort}
333
334 In this section we describe a new load-balancing strategy that we call
335 \besteffort{}.  First, we explain the general idea behind this strategy,
336 and then we describe some variants of this basic strategy.
337
338 \subsection{Basic strategy}
339
340 The general idea behind the \besteffort{} strategy is that each processor,
341 that detects it has more load than some of its neighbors, sends some load to the
342 most of its less loaded neighbors, doing its best to reach the equilibrium
343 between those neighbors and himself.
344
345 More precisely, when a processor $i$ is in its load-balancing phase,
346 he proceeds as following.
347 \begin{enumerate}
348 \item First, the neighbors are sorted in non-decreasing order of their
349   known loads $x^i_j(t)$.
350
351 \item Then, this sorted list is used to find its largest
352   prefix such as the load of each selected neighbor is smaller than:
353   \begin{itemize}
354   \item the load of processor $i$, and
355   \item the mean of the loads of the selected neighbors and of the
356     processor's load.
357   \end{itemize}
358   Let $S_i(t)$ be the set of the selected neighbors, and
359   $\bar{x}(t)$ be the mean of the loads of the selected neighbors plus the load of processor $i$:
360   \begin{equation*}
361     \bar{x}(t) = \frac{1}{\abs{S_i(t)} + 1}
362       \left( x_i(t) + \sum_{j\in S_i(t)} x^i_j(t) \right)
363   \end{equation*}
364   The following properties hold: {\bf RAPH : la suite tombe du ciel :-)}
365   \begin{equation*}
366     \begin{cases}
367       S_i(t) \subset V(i) \\
368       x^i_j(t) < x_i(t) & \forall j \in S_i(t) \\
369       x^i_j(t) < \bar{x} & \forall j \in S_i(t) \\
370       x^i_j(t) \leq x^i_k(t) & \forall j \in S_i(t), \forall k \in V(i) \setminus S_i(t) \\
371       \bar{x} \leq x_i(t)
372     \end{cases}
373   \end{equation*}
374
375 \item Once this selection is completed, processor $i$ sends to each of
376   the selected neighbor $j\in S_i(t)$ an amount of load $s_{ij}(t) =
377   \bar{x} - x^i_j(t)$.
378
379   From the above equations, and notably from the definition of
380   $\bar{x}$, it can easily be verified that:
381   \begin{equation*}
382     \begin{cases}
383       x_i(t) - \sum_{j\in S_i(t)} s_{ij}(t) = \bar{x} \\
384       x^i_j(t) + s_{ij}(t) = \bar{x} & \forall j \in S_i(t)
385     \end{cases}
386   \end{equation*}
387 \end{enumerate}
388
389 \subsection{Leveling the amount to send}
390
391 With the aforementioned basic strategy, each node does its best to reach the
392 equilibrium with its neighbors.  Since each node may be taking the same kind of
393 decision at the same moment, there is the risk that a node receives load from
394 several of its neighbors, and then is temporary going off the equilibrium state.
395 This is particularly true with strongly connected applications.
396
397 In order to reduce this effect, we add the ability to level the amount to send.
398 The idea, here, is to make smaller steps toward the equilibrium, such that a
399 potentially wrong decision has a lower impact.
400
401 Roughtly speaking, once $s_{ij}$ has been evaluated as previously explained, it is simply divided by
402 a given factor.  This parameter is called $k$ in
403 Section~\ref{sec.results}.  The amount of data to send is then $s_{ij}(t) =
404 (\bar{x} - x^i_j(t))/k$.
405 \FIXME[check that it's still named $k$ in Sec.~\ref{sec.results}]{}
406
407 \section{Other strategies}
408 \label{sec.other}
409
410 Another load balancing strategy, working under the same conditions, was
411 previously developed by Bahi, Giersch, and Makhoul in
412 \cite{bahi+giersch+makhoul.2008.scalable}.  In order to assess the performances
413 of the new \besteffort{}, we naturally chose to compare it to this anterior
414 work.  More precisely, we will use the algorithm~2 from
415 \cite{bahi+giersch+makhoul.2008.scalable} and, in the following, we will
416 reference it under the name of naïve implementation of Bertsekas' load balancing algorithm.  {\bf : RAPH j'ai renommé MAKHOUL en naive, il faut valider !!!! LE SOUCI, il faudrait refaire les figures}
417
418 Here is an outline of the \makhoul{} algorithm.  When a given node needs to take
419 a load balancing decision, it starts by sorting its neighbors by increasing
420 order of their load.  Then, it computes the difference between its own load, and
421 the load of each of its neighbors.  Finally, taking the neighbors following the
422 order defined before, the amount of load to send $s_{ij}$ is computed as
423 $1/(n+1)$ of the load difference, with $n$ being the number of neighbors.  This
424 process continues as long as the node is more loaded than the considered
425 neighbor.
426
427
428 \section{Virtual load}
429 \label{sec.virtual-load}
430
431 In this section,  we present the concept of \emph{virtual load}.  In order to
432 use this concept, load balancing messages must be sent using two different kinds
433 of  messages:  load information  messages  and  load  balancing messages.   More
434 precisely, a node wanting to send a part of its load to one of its neighbors
435 can first send a load information message containing the load it will send, and
436 then it can send the load  balancing message containing data  to be transferred.
437 Load information  message are really  short, consequently they will  be received
438 very quickly.  In opposition, load  balancing messages are often bigger and thus
439 require more time to be transferred.
440
441 The  concept  of  \emph{virtual load}  allows  a  node  that received  a  load
442 information message to integrate the load that it will receive later in its load
443 (virtually). Consequently the considered node can send  a (real)  part of  its load  to some  of its
444 neighbors. In fact,  a node that receives a load  information message knows that
445 later it  will receive the  corresponding load balancing message  containing the
446 corresponding data.  So, if this node detects it is too  loaded compared to some
447 of its neighbors  and if it has enough  load (real load), then it  can send more
448 load  to  some of  its  neighbors  without waiting  the  reception  of the  load
449 balancing message.
450
451 Doing  this, we  can  expect a  faster  convergence since  nodes  have a  faster
452 information of the load they will receive, so they can take it into account.
453
454 %\FIXME{Est ce qu'on donne l'algo avec virtual load?}
455
456 With integer load, this algorithm has been adapted by rounding the load value. In fact, we consider that the total amount of load is big enough and that it can be split with integer numbers.
457
458 %\FIXME{describe integer mode}
459
460 \section{Simulations}
461 \label{sec.simulations}
462
463 In order to test and validate our approaches, we wrote a simulator
464 using the SimGrid
465 framework~\cite{simgrid.web,casanova+giersch+legrand+al.2014.simgrid}.  This
466 simulator, which consists of about 2,700 lines of C++, allows to run
467 the different load-balancing strategies under various parameters, such
468 as the initial distribution of load, the interconnection topology, the
469 characteristics of the running platform, etc.  Then several metrics
470 are issued that permit to compare the strategies.
471
472 The simulation model is detailed in the next section (\ref{sec.model}), and the
473 experimental contexts are described in section~\ref{sec.exp-context}.  Then the
474 results of the simulations are presented in section~\ref{sec.results}.
475
476 \subsection{Simulation model}
477 \label{sec.model}
478
479 In the simulation model the processors exchange messages which are of
480 two kinds.  First, there are \emph{control messages} which only carry
481 information that is exchanged between the processors, such as the
482 current load, or the virtual load transfers if this option is
483 selected.  These messages are rather small, and their size is
484 constant.  Then, there are \emph{data messages} that carry the real
485 load transferred between the processors.  The size of a data message
486 is a function of the amount of load that it carries, and it can be
487 pretty large.  In order to receive the messages, each processor has
488 two receiving channels, one for each kind of messages.  Finally, when
489 a message is sent or received, this is done by using the non-blocking
490 primitives of SimGrid\footnote{That are \texttt{MSG\_task\_isend()},
491   and \texttt{MSG\_task\_irecv()}.}.
492
493 During the simulation, each processor concurrently runs three threads:
494 a \emph{receiving thread}, a \emph{computing thread}, and a
495 \emph{load-balancing thread}, which we will briefly describe now.
496
497 For the sake of simplicity, a few details were voluntary omitted from
498 these descriptions.  For an exhaustive presentation, we refer to the
499 actual source code that was used for the experiments%
500 \footnote{As mentioned before, our simulator relies on the SimGrid
501   framework~\cite{casanova+giersch+legrand+al.2014.simgrid}.  For the
502   experiments, we used a pre-release of SimGrid 3.7 (Git commit
503   67d62fca5bdee96f590c942b50021cdde5ce0c07, available from
504   \url{https://gforge.inria.fr/scm/?group_id=12})}, and which is
505 available at
506 \url{http://info.iut-bm.univ-fcomte.fr/staff/giersch/software/loba.tar.gz}.
507
508 \subsubsection{Receiving thread}
509
510 The receiving thread is in charge of waiting for messages to come, either on the
511 control channel, or on the data channel.  Its behavior is sketched by
512 Algorithm~\ref{algo.recv}.  When a message is received, it is pushed in a buffer
513 of received message, to be later consumed by one of the other threads.  There
514 are two such buffers, one for the control messages, and one for the data
515 messages.  The buffers are implemented with a lock-free FIFO
516 \cite{sutter.2008.writing} to avoid contention between the threads.
517
518 \begin{algorithm}
519   \caption{Receiving thread}
520   \label{algo.recv}
521   \KwData{
522     \begin{algodata}
523       \VAR{ctrl\_chan}, \VAR{data\_chan}
524       & communication channels (control and data) \\
525       \VAR{ctrl\_fifo}, \VAR{data\_fifo}
526       & buffers of received messages (control and data) \\
527     \end{algodata}}
528   \While{true}{%
529     wait for a message to be available on either \VAR{ctrl\_chan},
530     or \VAR{data\_chan}\;
531     \If{a message is available on \VAR{ctrl\_chan}}{%
532       get the message from \VAR{ctrl\_chan}, and push it into \VAR{ctrl\_fifo}\;
533     }
534     \If{a message is available on \VAR{data\_chan}}{%
535       get the message from \VAR{data\_chan}, and push it into \VAR{data\_fifo}\;
536     }
537   }
538 \end{algorithm}
539
540 \subsubsection{Computing thread}
541
542 The computing thread is in charge of the real load management.  As exposed in
543 Algorithm~\ref{algo.comp}, it iteratively runs the following operations:
544 \begin{itemize}
545 \item if some load was received from the neighbors, get it;
546 \item if there is some load to send to the neighbors, send it;
547 \item run some computations, whose duration is function of the current
548   load of the processor.
549 \end{itemize}
550 Practically, after the computation, the computing thread waits for a
551 small amount of time if the iterations are looping too fast (for
552 example, when the current load is near zero).
553
554 \begin{algorithm}
555   \caption{Computing thread}
556   \label{algo.comp}
557   \KwData{
558     \begin{algodata}
559       \VAR{data\_fifo} & buffer of received data messages \\
560       \VAR{real\_load} & current load \\
561     \end{algodata}}
562   \While{true}{%
563     \If{\VAR{data\_fifo} is empty and $\VAR{real\_load} = 0$}{%
564       wait until a message is pushed into \VAR{data\_fifo}\;
565     }
566     \While{\VAR{data\_fifo} is not empty}{%
567       pop a message from \VAR{data\_fifo}\;
568       get the load embedded in the message, and add it to \VAR{real\_load}\;
569     }
570     \ForEach{neighbor $n$}{%
571       \If{there is some amount of load $a$ to send to $n$}{%
572         send $a$ units of load to $n$, and subtract it from \VAR{real\_load}\;
573       }
574     }
575     \If{$\VAR{real\_load} > 0.0$}{
576       simulate some computation, whose duration is function of \VAR{real\_load}\;
577       ensure that the main loop does not iterate too fast\;
578     }
579   }
580 \end{algorithm}
581
582 \subsubsection{Load-balancing thread}
583
584 The load-balancing thread is in charge of running the load-balancing algorithm,
585 and exchange the control messages.  As shown in Algorithm~\ref{algo.lb}, it
586 iteratively runs the following operations:
587 \begin{itemize}
588 \item get the control messages that were received from the neighbors;
589 \item run the load-balancing algorithm;
590 \item send control messages to the neighbors, to inform them of the
591   processor's current load, and possibly of virtual load transfers;
592 \item wait a minimum (configurable) amount of time, to avoid to
593   iterate too fast.
594 \end{itemize}
595
596 \begin{algorithm}
597   \caption{Load-balancing}
598   \label{algo.lb}
599   \While{true}{%
600     \While{\VAR{ctrl\_fifo} is not empty}{%
601       pop a message from \VAR{ctrl\_fifo}\;
602       identify the sender of the message,
603       and update the current knowledge of its load\;
604     }
605     run the load-balancing algorithm to make the decision about load transfers\;
606     \ForEach{neighbor $n$}{%
607       send a control messages to $n$\;
608     }
609     ensure that the main loop does not iterate too fast\;
610   }
611 \end{algorithm}
612
613 %\paragraph{}\FIXME{ajouter des détails sur la gestion de la charge virtuelle ?
614 %  par ex, donner l'idée générale de l'implémentation.  l'idée générale est déja
615 %  décrite en section~\ref{sec.virtual-load}}
616
617 \subsection{Experimental contexts}
618 \label{sec.exp-context}
619
620 In order to assess the performances of our algorithms, simulations with various parameters have been achieved out, and several metrics are described in this section.
621
622 \subsubsection{Load balancing strategies}
623
624 Several load balancing strategies were compared.  Experiments with
625 the \besteffort{}, and with the \makhoul{} strategies have been performed.  \emph{Best
626   effort} was tested with parameter $k = 1$, $k = 2$, and $k = 4$.  Secondly,
627 each strategy was run in its two variants: with, and without the management of
628 \emph{virtual load}.  Finally, each configuration with \emph{real},
629 and with \emph{integer} load is considered.
630
631 To summarize the different load balancing strategies, we have:
632 \begin{description}
633 \item[\textbf{strategies:}] \makhoul{}, or \besteffort{} with $k\in
634   \{1,2,4\}$
635 \item[\textbf{variants:}] with, or without virtual load
636 \item[\textbf{domain:}] real load, or integer load
637 \end{description}
638 %
639 This gives us as many as $4\times 2\times 2 = 16$ different strategies.
640
641 \subsubsection{End of the simulation}
642
643 The simulations were run until the load was nearly balanced among the
644 participating nodes.  More precisely the simulation stops when each node holds
645 an amount of load at less than 1\% of the load average, during an arbitrary
646 number of computing iterations (2000 in our case).
647
648 Note that this convergence detection was implemented in a centralized manner.
649 This is easy to do within the simulator, but it is obviously not realistic.  In a
650 real application we would have chosen a decentralized convergence detection
651 algorithm, like the one described in \cite{ccl09:ij}.
652
653 \subsubsection{Platforms}
654
655 In order to show the behavior of the different strategies in different
656 settings, we simulated the executions on two sorts of platforms.  These two
657 sorts of platforms differ by their network topology.  On the one hand,
658 we have homogeneous platforms, modeled as a cluster.  On the other hand, we have
659 heterogeneous platforms, modeled as the interconnection of a number of clusters.
660
661 The clusters are modeled by a fixed number of computing nodes interconnected
662 through a backbone link.  Each computing node has a computing power of
663 1~GFlop/s, and is connected to the backbone by a network link whose bandwidth is
664 of 125~MB/s, with a latency of 50~$\mu$s.  The backbone has a network bandwidth
665 of 2.25~GB/s, with a latency of 500~$\mu$s.
666
667 The heterogeneous platform descriptions were created by taking a subset of the
668 Grid'5000 infrastructure\footnote{Grid'5000 is a French large scale experimental
669   Grid (see \url{https://www.grid5000.fr/}).}, as described in the platform file
670 \texttt{g5k.xml} distributed with SimGrid.  Note that the heterogeneity of the
671 platform here only comes from the network topology.  Indeed, since our
672 algorithms currently do not handle heterogeneous computing resources, the
673 processor speeds were normalized, and we arbitrarily chose to fix them to
674 1~GFlop/s.
675
676 Then each kind of platform with four different numbers of computing
677 nodes: 16, 64, 256, and 1024 nodes is built in a similar way.
678
679 \subsubsection{Configurations}
680
681 The distributed processes of the application were then logically organized along
682 three possible topologies: a line, a torus or an hypercube.  Tests were performed with the total load initially on only one node (at one end for the line topology).
683 Other tests for which the load was initially randomly distributed across all the
684 participating nodes are also considered.  The total amount of load was fixed to a number of load
685 units equal to 1000 times the number of node.  The average load is then of 1000
686 load units.
687
688 For all the previous configurations, the
689 computation and communication costs of a load unit are defined.  We chose them, such as to
690 have three different computation over communication cost ratios, and hence model
691 three different kinds of applications:
692 \begin{itemize}
693 \item mainly communicating, with a computation/communication cost ratio of $1/10$;
694 \item mainly computing, with a computation/communication cost ratio of $10/1$ ;
695 \item balanced, with a computation/communication cost ratio of $1/1$.
696 \end{itemize}
697
698 To summarize the various configurations, we have:
699 \begin{description}
700 \item[\textbf{platforms:}] homogeneous (cluster), or heterogeneous (subset of
701   Grid'5000)
702 \item[\textbf{platform sizes:}] platforms with 16, 64, 256, or 1024 nodes
703 \item[\textbf{process topologies:}] line, torus, or hypercube
704 \item[\textbf{initial load distribution:}] initially on a only node, or
705   initially randomly distributed over all nodes
706 \item[\textbf{computation/communication cost ratio:}] $10/1$, $1/1$, or $1/10$
707 \end{description}
708 %
709 This gives us as many as $2\times 4\times 3\times 2\times 3 = 144$ different
710 configurations.
711 %
712 Combined with the various load balancing strategies,  $16\times 144 =
713 2304$ distinct settings have been evaluated.  In fact, as it will be shown later, only configations with a maximum number of 1,024 nodes are considered in order to limit the time of experiments.
714
715
716 \subsubsection{Metrics}
717 \label{sec.metrics}
718
719 In order to evaluate and compare the different load balancing strategies we had
720 to define several metrics.  Our goal, when choosing these metrics, was to have
721 something tending to a constant value, i.e. to have a measure which is not
722 changing anymore once the convergence state is reached.  Moreover, we wanted to
723 have some normalized value, in order to be able to compare them across different
724 settings.
725
726 With these constraints in mind, we defined the following metrics:
727 %
728 \begin{description}
729 \item[\textbf{average idle time:}] that's the total time spent, when the nodes
730   don't hold any share of load, and thus have nothing to compute.  This total
731   time is divided by the number of participating nodes, such as to have a number
732   that can be compared between simulations of different sizes.
733
734   This metric is expected to give an idea of the ability of the strategy to
735   diffuse the load quickly.  A smaller value is better.
736
737 \item[\textbf{average convergence date:}] that's the average of the dates when
738   all nodes reached the convergence state.  The dates are measured as a number
739   of (simulated) seconds since the beginning of the simulation.
740
741 \item[\textbf{maximum convergence date:}] that's the date when the last node
742   reached the convergence state.
743
744   These two dates give an idea of the time needed by the strategy to reach the
745   equilibrium state.  A smaller value is better.
746
747 \item[\textbf{data transfer amount:}] that's the sum of the amount of all data
748   transfers during the simulation.  This sum is then normalized by dividing it
749   by the total amount of data present in the system.
750
751   This metric is expected to give an idea of the efficiency of the strategy in
752   terms of data movements, i.e. its ability to reach the equilibrium with fewer
753   transfers.  Again, a smaller value is better.
754
755 \end{description}
756
757
758 \subsection{Experimental results}
759 \label{sec.results}
760
761 In this section, the results for the different simulations will be presented,
762 and we will try to explain our observations.
763
764 \subsubsection{Cluster vs grid platforms}
765
766 As mentioned earlier, different algorithms have been simulated on two kinds of
767 physical platforms: clusters and grids.  A first observation that we can make,
768 is that the graphs we draw from the data have a similar aspect for the two kinds
769 of platforms.  The only noticeable difference is that the algorithms need a bit
770 more time to achieve the convergence on the grid platforms, than on clusters.
771 Nevertheless their relative performances remain generally similar.
772
773 This suggests that the relative performances of the different strategies are not
774 influenced by the characteristics of the physical platform.  The differences in
775 the convergence times can be explained by the fact that on the grid platforms,
776 distant sites are interconnected by links of smaller bandwidth.
777
778 Therefore, in the following, we will only discuss the results for the grid
779 platforms.
780
781 \subsubsection{Main results}
782
783 \begin{figure*}[p]
784   \centering
785   \includegraphics[width=.5\linewidth]{data/graphs/R1-10:1-grid-line}%
786   \includegraphics[width=.5\linewidth]{data/graphs/R1-1:10-grid-line}
787   \includegraphics[width=.5\linewidth]{data/graphs/R1-10:1-grid-torus}%
788   \includegraphics[width=.5\linewidth]{data/graphs/R1-1:10-grid-torus}
789   \includegraphics[width=.5\linewidth]{data/graphs/R1-10:1-grid-hcube}%
790   \includegraphics[width=.5\linewidth]{data/graphs/R1-1:10-grid-hcube}
791   \caption{Real mode, initially on an only mode, comp/comm cost ratio = $10/1$ (left), or $1/10$ (right).}
792   \label{fig.results1}
793 \end{figure*}
794
795 \begin{figure*}[p]
796   \centering
797   \includegraphics[width=.5\linewidth]{data/graphs/RN-10:1-grid-line}%
798   \includegraphics[width=.5\linewidth]{data/graphs/RN-1:10-grid-line}
799   \includegraphics[width=.5\linewidth]{data/graphs/RN-10:1-grid-torus}%
800   \includegraphics[width=.5\linewidth]{data/graphs/RN-1:10-grid-torus}
801   \includegraphics[width=.5\linewidth]{data/graphs/RN-10:1-grid-hcube}%
802   \includegraphics[width=.5\linewidth]{data/graphs/RN-1:10-grid-hcube}
803   \caption{Real mode, random initial distribution, comp/comm cost ratio = $10/1$ (left), or $1/10$ (right).}
804   \label{fig.resultsN}
805 \end{figure*}
806
807 The main results for our simulations on grid platforms are presented on the
808 figures~\ref{fig.results1} and~\ref{fig.resultsN}.
809 %
810 The results on figure~\ref{fig.results1} are when the load to balance is
811 initially on an only node, while the results on figure~\ref{fig.resultsN} are
812 when the load to balance is initially randomly distributed over all nodes.
813
814 On both figures, the computation/communication cost ratio is $10/1$ on the left
815 column, and $1/10$ on the right column.  With a computation/communication cost
816 ratio of $1/1$ the results are just between these two extrema, and definitely
817 don not give additional information, so we chose not to show them here.
818
819 On each of the figures~\ref{fig.results1} and~\ref{fig.resultsN}, the results
820 are given for the process topology being, from top to bottom, a line, a torus or
821 an hypercube.
822
823 Finally, on the graphs, the vertical bars show the measured times for each of
824 the algorithms.  These measured times are, from bottom to top, the average idle
825 time, the average convergence date, and the maximum convergence date (see
826 Section~\ref{sec.metrics}).  The measurements are repeated for the different
827 platform sizes.  Some bars are missing, specially for large platforms.  This is
828 either because the algorithm did not reach the convergence state in the
829 allocated time, or because we simply decided not to run it.
830
831 \FIXME{annoncer le plan de la suite}
832
833 \subsubsection{The \besteffort{} and  \makhoul{} strategies without virtual load}
834
835 Before looking  at the different variations,  we will first show  that the plain
836 \besteffort{}  strategy  is valuable,  and  may be  as  good  as the  \makhoul{}
837 strategy.  On  Figures~\ref{fig.results1} and~\ref{fig.resultsN},
838 these strategies are respectively labeled ``b'' and ``a''.
839
840 We  can  see  that  the  relative  performance of  these  strategies  is  mainly
841 influenced by  the application topology.  It  is for the line  topology that the
842 difference is the  more important.  In this case,  the \besteffort{} strategy is
843 nearly faster than the \makhoul{} strategy.  This can  be explained by the
844 fact that the \besteffort{} strategy tries to distribute the load fairly between
845 all the nodes  and with the line topology,  it is easy to load  balance the load
846 fairly.
847
848 On the contrary, for the hypercube topology, the \besteffort{} strategy performs
849 worse than the \makhoul{} strategy. In this case, the \makhoul{} strategy which
850 tries to give more load to few neighbors reaches the equilibrium faster.
851
852 For the torus  topology, for which the  number of links is between  the line and
853 the hypercube, the \makhoul{} strategy  is slightly better but the difference is
854 more nuanced when the initial load is  only on one node. The only case where the
855 \makhoul{} strategy is really faster than the \besteffort{} strategy is with the
856 random initial distribution when the communication are slow.
857
858 Globally   the  number  of   interconnection  is   very  important.    The  more
859 the interconnection links are, the  faster the \makhoul{} strategy is because
860 it distributes quickly significant amount of load, even if this is unfair, between
861 all the  neighbors.  In opposition,  the \besteffort{} strategy  distributes the
862 load fairly so this strategy is better for low connected strategy.
863
864
865 \subsubsection{Virtual load}
866
867 The influence of virtual load is most of the time really significant compared to
868 the  same configuration  without  it. Sometimes  it  has no  effect  but {\bf  A
869   VERIFIER} it has never a negative effect on the load balancing we tested.
870
871 On Figure~\ref{fig.results1}, when the load is  initially on one node, it can be
872 noticed that the  average idle times are generally longer  with the virtual load
873 than without  it. This  can be explained  by the  fact that, with  virtual load,
874 processors  will exchange all  the load  they need  to exchange  as soon  as the
875 virtual load has been balanced  between all the processors. So consequently they
876 cannot  compute  at  the  beginning.  This is  especially  noticeable  when  the
877 communication are slow (on the left part of Figure ~\ref{fig.results1}.
878
879 %Dans ce cas  légère amélioration de la cvg. max.  Temps  moyen de cvg. amélioré,
880 %mais plus de temps passé en idle, surtout quand les comms coutent cher.
881
882 %\subsubsection{The \besteffort{} strategy with an initial random load
883 %  distribution, and larger platforms}
884
885 %In 
886 %Mêmes conclusions pour line et hcube.
887 %Sur tore, BE se fait exploser quand les comms coutent cher.
888
889 %\FIXME{virer les 1024 ?}
890
891 %\subsubsection{With the virtual load extension with an initial random load
892 %  distribution}
893
894 %Soit c'est équivalent, soit on gagne -> surtout quand les comms coutent cher et
895 %qu'il y a beaucoup de voisins.
896
897 \subsubsection{The $k$ parameter}
898 \label{results-k}
899
900 As  explained  previously when  the  communication  are  slow the  \besteffort{}
901 strategy is efficient. This is due to the fact that it tries to balance the load
902 fairly and consequently  a significant amount of the  load is transfered between
903 processors.  In this situation, it is possible to reduce the convergence time by
904 using  the leveler  parameter  (parameter  $k$).  The  advantage  of using  this
905 solution is particularly efficient when the initial load is randomly distributed
906 on  the nodes with  torus and  hypercube topology  and slow  communication. When
907 virtual load  mechanism is used,  the effect of  this parameter is  also visible
908 with the same condition.
909
910
911
912 \subsubsection{With integer load}
913
914 We also performed  some experiments with integer load instead  of load with real
915 value.  In  this case, the  results have globally  the same behavior.   The most
916 intereting  result, from  our point  of view,  is that  the virtual  mode allows
917 processors in a line topology to converge to the uniform load balancing. Without
918 the virtual  load, most  of the time,  processors converge  to what we  call the
919 ``stairway effect'', that  is to say that  there is only a difference  of one in
920 the load of each processor and its neighbors (for example with 10 processors, we
921 obtain 10 9 8 7 6 6 7 8 9 10 instead of 8 8 8 8 8 8 8 8 8 8).
922
923 %Cas normal, ligne -> converge pas (effet d'escalier).
924 %Avec vload, ça converge.
925
926 %Dans les autres cas, résultats similaires au cas réel: redire que vload est
927 %intéressant.
928
929 \FIXME{ajouter une courbe avec l'équilibrage en entier}
930
931 \FIXME{virer la metrique volume de comms}
932
933 \FIXME{ajouter une courbe ou on voit l'évolution de la charge en fonction du
934   temps : avec et sans vload}
935
936 % \begin{itemize}
937 % \item cluster ou grid, entier ou réel, ne font pas de grosses différences
938 % \item bookkeeping? améliore souvent les choses, parfois au prix d'un retard au démarrage
939 % \item makhoul? se fait battre sur les grosses plateformes
940 % \item taille de plateforme?
941 % \item ratio comp/comm?
942 % \item option $k$? peut-être intéressant sur des plateformes fortement interconnectées (hypercube)
943 % \item volume de comm? souvent, besteffort/plain en fait plus. pourquoi?
944 % \item répartition initiale de la charge ?
945 % \item integer mode sur topo. line n'a jamais fini en plain? vérifier si ce n'est
946 %   pas à cause de l'effet d'escalier que bk est capable de gommer.
947 % \end{itemize}}
948
949 % On veut montrer quoi ? :
950
951 % 1) best plus rapide que les autres (simple, makhoul)
952 % 2) avantage virtual load
953
954 % Est ce qu'on peut trouver des contre exemple?
955 % Topologies variées
956
957
958 % Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées
959 % Mais aussi simulation avec temps court qui montre que seul best converge
960
961 % Expés avec ratio calcul/comm rapide et lent
962
963 % Quelques expés avec charge initiale aléatoire plutot que sur le premier proc
964
965 % Cadre processeurs homogènes
966
967 % Topologies statiques
968
969 % On ne tient pas compte de la vitesse des liens donc on la considère homogène
970
971 % Prendre un réseau hétérogène et rendre processeur homogène
972
973 % Taille : 10 100 très gros
974
975 \section{Conclusion}
976 \label{conclusions-remarks}
977
978 In this paper, we have presented a new asynchronous load balancing algorithm for non negative real numbers
979 of divisible loads in distributed systems. The proposed algorithm which is called {\it best effort strategy} 
980 seeks greedily for loads imbalance detection and tries to achieve efficient local equilibrium threshold 
981 between neighbors. Our proposal is based on {\it a clairvoyant virtual loads' transfer} scheme which allows nodes to predict the future loads they will receive in the subsequent iterations. 
982 This leads to a noticeable speedup of the global convergence time of the load balancing process. 
983 Based on SimGrid simulator, we have demonstrated that, when we deal with realistic models of computation and communication, our algorithm exhibits better performances than its direct competitors from the literature. This makes it a viable choice for load balancing of both non negative real and integer divisible loads in distributed computing systems. % un peu gonflé peut être pour la dernière phrase.
984
985 \section*{Acknowledgments}
986
987 Computations have been performed on the supercomputer facilities of the
988 Mésocentre de calcul de Franche-Comté.
989
990 \bibliographystyle{elsarticle-num}
991 \bibliography{biblio}
992 \FIXME{find and add more references}
993
994 \end{document}
995
996 %%% Local Variables:
997 %%% mode: latex
998 %%% TeX-master: t
999 %%% fill-column: 80
1000 %%% ispell-local-dictionary: "american"
1001 %%% End:
1002
1003 % LocalWords:  Raphaël Couturier Arnaud Giersch Franche ij Bertsekas Tsitsiklis
1004 % LocalWords:  SimGrid DASUD Comté asynchronism ji ik isend irecv Cortés et al
1005 % LocalWords:  chan ctrl fifo Makhoul GFlop xml pre FEMTO Makhoul's fca bdee
1006 % LocalWords:  cdde Contassot Vivier underlaid du de Maréchal Juin cedex calcul
1007 % LocalWords:  biblio Institut UMR Université UFC Centre Scientifique CNRS des
1008 % LocalWords:  École Nationale Supérieure Mécanique Microtechniques ENSMM UTBM
1009 % LocalWords:  Technologie Bahi