\author{Arnaud Giersch\corref{cor}}
\ead{arnaud.giersch@femto-st.fr}
-\address{FEMTO-ST, University of Franche-Comté\\
- 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France}
+\address{%
+ Institut FEMTO-ST (UMR 6174),
+ Université de Franche-Comté (UFC),
+ Centre National de la Recherche Scientifique (CNRS),
+ École Nationale Supérieure de Mécanique et des Microtechniques (ENSMM),
+ Université de Technologie de Belfort Montbéliard (UTBM)\\
+ 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France}
\cortext[cor]{Corresponding author.}
strategy. On the graphs from the figure~\ref{fig.results1}, these strategies
are respectively labeled ``b'' and ``a''.
-twice faster on lines
-almost equivalent on torus
-worse on hcubes
+We can see that the relative performance of these startegies is mainly
+influenced by the application topology. It's for the line topology that the
+difference is the more important. In this case, the \besteffort{} strategy is
+nearly twice as fast as the \makhoul{} strategy.
+
+On the contrary, for the hypercube topoly, the \besteffort{} strategy performs
+worse than the \makhoul{} strategy.
+
+Finally, the results are more nuanced for the torus topology.
+
+This can be explained by ...
-> interconnection
qu'il y a beaucoup de voisins.
\subsubsection{The $k$ parameter}
+\label{results-k}
Dans le cas où les comms coutent cher et ou BE se fait avoir, on peut ameliorer
les perfs avec le param k.