$x_3^2(t)$. So we consider that the \emph{ping-pong} condition is probably to
strong. Currently, we did not try to make another convergence proof without this
condition or with a weaker condition.
-%
-\FIXME{Develop: We have the feeling that such a weaker condition
- exists, because (it's not a proof, but) we have never seen any
- scenario that is not leading to convergence, even with LB-strategies
- that are not fulfilling these two conditions.}
+
+Nevertheless, we conjecture that such a weaker condition exists. In fact, we
+have never seen any scenario that is not leading to convergence, even with
+load-balancing strategies that are not exactly fulfilling these two conditions.
+
+It may be the subject of future work to express weaker conditions, and to prove
+that they are sufficient to ensure the convergence of the load-balancing
+algorithm.
\section{Best effort strategy}
\label{Best-effort}
\item volume de comm? souvent, besteffort/plain en fait plus. pourquoi?
+\item répartition initiale de la charge ?
+
\item integer mode sur topo. line n'a jamais fini en plain? vérifier si ce n'est
pas à cause de l'effet d'escalier que bk est capable de gommer.
-\item répartition initiale de la charge ?
-
\end{itemize}
\begin{itshape}
the Mésocentre de calcul de Franche-Comté.
\end{acknowledgements}
+\FIXME{find and add more references}
\bibliographystyle{spmpsci}
\bibliography{biblio}