Load balancing algorithms are extensively used in parallel and distributed
applications in order to reduce the execution times. They can be applied in
different scientific fields from high performance computation to micro sensor
-networks. They are iterative by nature. In literature many kinds of load
+networks. They are iterative by nature.\FIXME{really?}
+In literature many kinds of load
balancing algorithms have been studied. They can be classified according
different criteria: centralized or decentralized, in static or dynamic
environment, with homogeneous or heterogeneous load, using synchronous or
amount of load. Moreover, when real asynchronous applications are considered,
using asynchronous load balancing algorithms can reduce the execution
times. Most of the times, it is simpler to distinguish load information messages
-from data migration messages. Former ones allows a node to inform its
+from data migration messages. Former ones allow a node to inform its
neighbors of its current load. These messages are very small, they can be sent
-quite often. For example, if an computing iteration takes a significant times
+quite often. For example, if a computing iteration takes a significant times
(ranging from seconds to minutes), it is possible to send a new load information
-message at each neighbor at each iteration. Latter messages contains data that
+message to each neighbor at each iteration. Latter messages contain data that
migrates from one node to another one. Depending on the application, it may have
sense or not that nodes try to balance a part of their load at each computing
iteration. But the time to transfer a load message from a node to another one is
is larger. Consequently, it can send a part of it real load to some of its
neighbors if required. We call this trick the \emph{virtual load} mechanism.
-
-
-So, in this work, we propose a new strategy for improving the distribution of
-the load and a simple but efficient trick that also improves the load
-balancing. Moreover, we have conducted many simulations with SimGrid in order to
-validate our improvements are really efficient. Our simulations consider that in
-order to send a message, a latency delays the sending and according to the
-network performance and the message size, the time of the reception of the
+So, in this work, we propose a new strategy to improve the distribution of the
+load and a simple but efficient trick that also improves the load
+balancing. Moreover, we have conducted many simulations with SimGrid in order to
+validate that our improvements are really efficient. Our simulations consider
+that in order to send a message, a latency delays the sending and according to
+the network performance and the message size, the time of the reception of the
message also varies.
In the following of this paper, Section~\ref{sec.bt-algo} describes the
Bertsekas and Tsitsiklis proposed a model
in~\cite{bertsekas+tsitsiklis.1997.parallel}. Here we recall some notations.
Consider that $N={1,...,n}$ processors are connected through a network.
-Communication links are represented by a connected undirected graph $G=(N,V)$
-where $V$ is the set of links connecting different processors. In this work, we
+Communication links are represented by a connected undirected graph $G=(N,A)$
+where $A$ is the set of links connecting different processors. In this work, we
consider that processors are homogeneous for sake of simplicity. It is quite
easy to tackle the heterogeneous case~\cite{ElsMonPre02}. Load of processor $i$
at time $t$ is represented by $x_i(t)\geq 0$. Let $V(i)$ be the set of
cases. For example, if we consider only three processors and that processor $1$
is linked to processor $2$ which is also linked to processor $3$ (i.e. a simple
chain which 3 processors). Now consider we have the following values at time $t$:
-\begin{eqnarray*}
-x_1(t)=10 \\
-x_2(t)=100 \\
-x_3(t)=99.99\\
- x_3^2(t)=99.99\\
-\end{eqnarray*}
+\begin{align*}
+ x_1(t) &= 10 \\
+ x_2(t) &= 100 \\
+ x_3(t) &= 99.99 \\
+ x_3^2(t) &= 99.99 \\
+\end{align*}
In this case, processor $2$ can either sends load to processor $1$ or processor
$3$. If it sends load to processor $1$ it will not satisfy condition
(\ref{eq.ping-pong}) because after the sending it will be less loaded that
order of their load. Then, it computes the difference between its own load, and
the load of each of its neighbors. Finally, taking the neighbors following the
order defined before, the amount of load to send $s_{ij}$ is computed as
-$1/(N+1)$ of the load difference, with $N$ being the number of neighbors. This
+$1/(n+1)$ of the load difference, with $n$ being the number of neighbors. This
process continues as long as the node is more loaded than the considered
neighbor.