]> AND Private Git Repository - loba.git/blob - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Variable delay is defined, why not using it?
[loba.git] / process.cpp
1 #include <algorithm>
2 #include <tr1/functional>
3 #include <iterator>
4 #include <numeric>
5 #include <stdexcept>
6 #include <sstream>
7 #include <xbt/log.h>
8 #include <xbt/time.h>
9
10 XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
11
12 #include "misc.h"
13 #include "options.h"
14
15 #include "process.h"
16
17 double process::total_load_init = 0.0;
18 double process::total_load_running = 0.0;
19 double process::total_load_exit = 0.0;
20
21 process::process(int argc, char* argv[])
22 {
23     if (argc < 2 || !(std::istringstream(argv[1]) >> load))
24         throw std::invalid_argument("bad or missing initial load parameter");
25
26     neigh.assign(argv + 2, argv + argc);
27
28     pneigh.reserve(neigh.size());
29     for (unsigned i = 0 ; i < neigh.size() ; i++) {
30         neighbor* ptr = &neigh[i];
31         m_host_t host = MSG_get_host_by_name(ptr->get_name());
32         pneigh.push_back(ptr);
33         rev_neigh.insert(std::make_pair(host, ptr));
34     }
35
36     comp = 0.0;
37
38     prev_load_broadcast = -1;   // force sending of load on first send()
39     expected_load = load;
40     total_load_running += load;
41     total_load_init += load;
42
43     ctrl_close_pending = data_close_pending = neigh.size();
44     close_received = false;
45     finalizing = false;
46
47     e_xbt_log_priority_t logp = xbt_log_priority_verbose;
48     if (!LOG_ISENABLED(logp))
49         return;
50     std::ostringstream oss;
51     oss << neigh.size() << " neighbor";
52     if (!neigh.empty()) {
53         oss << ESSE(neigh.size()) << ": ";
54         std::transform(neigh.begin(), neigh.end() - 1,
55                        std::ostream_iterator<const char*>(oss, ", "),
56                        std::tr1::mem_fn(&neighbor::get_name));
57         oss << neigh.back().get_name();
58     }
59     LOG1(logp, "Got %s.", oss.str().c_str());
60     print_loads(false, logp);
61 }
62
63 process::~process()
64 {
65     total_load_exit += load;
66 }
67
68 int process::run()
69 {
70     double next_iter_after_date = 0.0;
71     INFO1("Initial load: %g", load);
72     VERB0("Starting...");
73     comp_iter = lb_iter = 0;
74     while (true) {
75         if (opt::min_iter_duration) {
76             double now = MSG_get_clock();
77             if (now < next_iter_after_date){
78                 double delay = next_iter_after_date - now;
79                 DEBUG1("sleeping for %g s", delay);
80                 MSG_process_sleep(delay);
81             }
82             next_iter_after_date = MSG_get_clock() + opt::min_iter_duration;
83         }
84
85         double ld = lb_load();
86         if (ld > 0.0) {
87             ++lb_iter;
88
89             if (opt::log_rate && lb_iter % opt::log_rate == 0) {
90                 if (opt::bookkeeping)
91                     INFO4("(%u:%u) current load: %g ; expected: %g",
92                           lb_iter, comp_iter, load, expected_load);
93                 else
94                     INFO2("(%u) current load: %g",
95                           lb_iter, load);
96             }
97
98             ld -= load_balance(ld);
99
100             print_loads(true, xbt_log_priority_debug);
101         }
102         lb_load() = ld;
103
104         // send load information, and load (data) if any
105         send();
106         if (load > 0.0) {
107             ++comp_iter;
108             compute();
109         }
110
111         if (opt::lb_maxiter && lb_iter >= opt::lb_maxiter) {
112             VERB2("Reached lb_maxiter: %d/%d", lb_iter, opt::lb_maxiter);
113             break;
114         }
115         if (opt::comp_maxiter && comp_iter >= opt::comp_maxiter) {
116             VERB2("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
117             break;
118         }
119         if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
120             VERB2("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
121             break;
122         }
123
124         // block on receiving unless there is something to compute or
125         // to send
126         bool wait = (load == 0 && lb_load() == prev_load_broadcast);
127         receive(wait);
128
129         // one of our neighbor is finalizing
130         if (opt::exit_on_close && close_received) {
131             VERB0("Close received");
132             break;
133         }
134
135         // have no load and cannot receive anything
136         if (load == 0.0 && !may_receive()) {
137             VERB0("I'm a poor lonesome process, and I have no load...");
138             break;
139         }
140
141         // fixme: this check should be implemented with a distributed
142         // algorithm, and not a shared global variable!
143         // fixme: should this chunk be moved before call to receive() ?
144         if (100.0 * total_load_running / total_load_init <=
145             opt::load_ratio_threshold) {
146             VERB0("No more load to balance in system.");
147             break;
148         }
149     }
150     VERB0("Going to finalize...");
151     finalize();
152
153     /* Open Questions :
154      * - definition of load on heterogeneous hosts ?
155      * - how to detect convergence ?
156      * - how to manage link failures ?
157      */
158
159     VERB0("Done.");
160     if (opt::bookkeeping) {
161         INFO4("Final load after %d:%d iterations: %g ; expected: %g",
162               lb_iter, comp_iter, load, expected_load);
163     } else {
164         INFO2("Final load after %d iterations: %g",
165               lb_iter, load);
166         if (lb_iter != comp_iter)
167             WARN2("lb_iter (%d) and comp_iter (%d) differ!",
168                   lb_iter, comp_iter);
169     }
170     return 0;
171 }
172
173 double process::sum_of_to_send() const
174 {
175     using std::tr1::bind;
176     using std::tr1::placeholders::_1;
177     using std::tr1::placeholders::_2;
178
179     return std::accumulate(neigh.begin(), neigh.end(), 0.0,
180                            bind(std::plus<double>(),
181                                 _1, bind(&neighbor::get_to_send, _2)));
182 }
183
184 double process::load_balance(double /*my_load*/)
185 {
186     if (lb_iter == 1)           // warn only once
187         WARN0("process::load_balance() is a no-op!");
188     return 0.0;
189 }
190
191 void process::compute()
192 {
193     if (load > 0.0) {
194         double flops = opt::comp_cost(load);
195         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
196         DEBUG2("compute %g flop%s", flops, ESSE(flops));
197         MSG_task_execute(task);
198         comp += flops;
199         MSG_task_destroy(task);
200     } else {
201         DEBUG0("nothing to compute !");
202     }
203 }
204
205 void process::send1_no_bookkeeping(neighbor& nb)
206 {
207     if (load != prev_load_broadcast)
208         comm.send(nb.get_ctrl_mbox(), new message(message::INFO, load));
209     double load_to_send = nb.get_to_send();
210     if (load_to_send > 0.0) {
211         comm.send(nb.get_data_mbox(), new message(message::LOAD, load_to_send));
212         nb.set_to_send(0.0);
213     }
214 }
215
216 void process::send1_bookkeeping(neighbor& nb)
217 {
218     if (expected_load != prev_load_broadcast)
219         comm.send(nb.get_ctrl_mbox(),
220                   new message(message::INFO, expected_load));
221     double load_to_send;
222     double new_debt;
223     double debt_to_send = nb.get_to_send();
224     if (debt_to_send > 0.0) {
225         comm.send(nb.get_ctrl_mbox(),
226                   new message(message::CREDIT, debt_to_send));
227         nb.set_to_send(0.0);
228         new_debt = nb.get_debt() + debt_to_send;
229     } else {
230         new_debt = nb.get_debt();
231     }
232     if (load <= new_debt) {
233         load_to_send = load;
234         nb.set_debt(new_debt - load_to_send);
235         load = 0.0;
236     } else {
237         load_to_send = new_debt;
238         nb.set_debt(0.0);
239         load -= load_to_send;
240     }
241     if (load_to_send > 0.0)
242         comm.send(nb.get_data_mbox(), new message(message::LOAD, load_to_send));
243 }
244
245 void process::send()
246 {
247     using std::tr1::bind;
248     using std::tr1::placeholders::_1;
249
250     if (opt::bookkeeping) {
251         std::for_each(neigh.begin(), neigh.end(),
252                       bind(&process::send1_bookkeeping, this, _1));
253         prev_load_broadcast = expected_load;
254     } else {
255         std::for_each(neigh.begin(), neigh.end(),
256                       bind(&process::send1_no_bookkeeping, this, _1));
257         prev_load_broadcast = load;
258     }
259     comm.flush(false);
260 }
261
262 void process::receive(bool wait)
263 {
264     message* msg;
265     m_host_t from;
266
267     while (may_receive() && comm.recv(msg, from, wait)) {
268         switch (msg->get_type()) {
269         case message::INFO: {
270             neighbor* n = rev_neigh[from];
271             n->set_load(msg->get_amount());
272             break;
273         }
274         case message::CREDIT:
275             expected_load += msg->get_amount();
276             break;
277         case message::LOAD: {
278             double ld = msg->get_amount();
279             load += ld;
280             if (finalizing)
281                 total_load_running -= ld;
282             break;
283         }
284         case message::CTRL_CLOSE:
285             ctrl_close_pending--;
286             close_received = true;
287             break;
288         case message::DATA_CLOSE:
289             data_close_pending--;
290             close_received = true;
291             break;
292         }
293         delete msg;
294         wait = false;           // only wait on first recv
295     }
296     comm.flush(false);
297 }
298
299 void process::finalize1(neighbor& nb)
300 {
301     comm.send(nb.get_ctrl_mbox(), new message(message::CTRL_CLOSE, 0.0));
302     comm.send(nb.get_data_mbox(), new message(message::DATA_CLOSE, 0.0));
303 }
304
305 void process::finalize()
306 {
307     using std::tr1::bind;
308     using std::tr1::placeholders::_1;
309
310     finalizing = true;
311     total_load_running -= load;
312
313     DEBUG2("send CLOSE to %lu neighbor%s",
314            (unsigned long )neigh.size(), ESSE(neigh.size()));
315     std::for_each(neigh.begin(), neigh.end(),
316                   bind(&process::finalize1, this, _1));
317
318     DEBUG2("wait for CLOSE from %lu neighbor%s",
319            (unsigned long )neigh.size(), ESSE(neigh.size()));
320     while (may_receive()) {
321         comm.flush(false);
322         receive(true);
323     }
324
325     comm.flush(true);
326 }
327
328 #define print_loads_generic(vec, verbose, logp, cat)                    \
329     if (_XBT_LOG_ISENABLEDV((*cat), logp)) {                            \
330         using std::tr1::bind;                                           \
331         using std::tr1::placeholders::_1;                               \
332         XCLOG0(cat, logp, "Neighbor loads:");                           \
333         std::for_each(vec.begin(), vec.end(),                           \
334                       bind(&neighbor::print, _1, verbose, logp, cat));  \
335     } else ((void)0)
336
337 void process::print_loads(bool verbose,
338                           e_xbt_log_priority_t logp,
339                           xbt_log_category_t cat) const
340 {
341     print_loads_generic(neigh, verbose, logp, cat);
342 }
343
344 void process::print_loads_p(bool verbose,
345                             e_xbt_log_priority_t logp,
346                             xbt_log_category_t cat) const
347 {
348     print_loads_generic(pneigh, verbose, logp, cat);
349 }
350
351 #undef print_loads_generic
352
353 // Local variables:
354 // mode: c++
355 // End: