]> AND Private Git Repository - loba.git/blob - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Define macro PR_VALUE(), like PR_STATS().
[loba.git] / process.cpp
1 #include <algorithm>
2 #include <cmath>
3 #include <functional>
4 #include <iterator>
5 #include <numeric>
6 #include <stdexcept>
7 #include <sstream>
8 #include <xbt/log.h>
9 #include <xbt/time.h>
10
11 XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
12
13 #include "misc.h"
14 #include "options.h"
15 #include "tracing.h"
16
17 #include "process.h"
18
19 double process::total_load_init = 0.0;
20 double process::total_load_running = 0.0;
21 double process::total_load_exit = 0.0;
22
23 namespace {
24
25     void sleep_until_date(double& date, double duration)
26     {
27         double sleep_duration = date - MSG_get_clock();
28         if (sleep_duration > 0.0)
29             MSG_process_sleep(sleep_duration);
30         date = MSG_get_clock() + duration;
31     }
32
33 }
34
35 process::process(int argc, char* argv[])
36 {
37     if (argc < 2 || !(std::istringstream(argv[1]) >> real_load))
38         throw std::invalid_argument("bad or missing initial load parameter");
39
40     double iload = std::trunc(real_load);
41     if (opt::integer_transfer && real_load != iload) {
42         XBT_WARN("Initial load %g is not an integer.  Truncate it.",
43                  real_load);
44         real_load = iload;
45     }
46
47     neigh.assign(argv + 2, argv + argc);
48
49     pneigh.reserve(neigh.size());
50     for (unsigned i = 0 ; i < neigh.size() ; i++) {
51         neighbor* ptr = &neigh[i];
52         m_host_t host = MSG_get_host_by_name(ptr->get_name());
53         pneigh.push_back(ptr);
54         rev_neigh.insert(std::make_pair(host, ptr));
55     }
56
57     prev_load_broadcast = -1;   // force sending of load on first send_all()
58     expected_load = real_load;
59     total_load_running += real_load;
60     total_load_init += real_load;
61     received_load = 0.0;
62
63     ctrl_close_pending = data_close_pending = neigh.size();
64     close_received = false;
65     finalizing = false;
66
67     all_comp_iter = comp_iter = lb_iter = 0;
68
69     lb_thread = new_msg_thread("loba",
70                                std::bind(&process::load_balance_loop, this));
71
72     e_xbt_log_priority_t logp = xbt_log_priority_verbose;
73     if (!LOG_ISENABLED(logp))
74         return;
75     std::ostringstream oss;
76     oss << neigh.size() << " neighbor";
77     if (!neigh.empty()) {
78         oss << ESSE(neigh.size()) << ": ";
79         std::transform(neigh.begin(), neigh.end() - 1,
80                        std::ostream_iterator<const char*>(oss, ", "),
81                        std::mem_fn(&neighbor::get_name));
82         oss << neigh.back().get_name();
83     }
84     XBT_LOG(logp, "Got %s.", oss.str().c_str());
85     print_loads(false, logp);
86 }
87
88 process::~process()
89 {
90     delete lb_thread;
91     total_load_exit += real_load;
92     xbt_assert(received_load == 0.0,
93                "received_load is %g, but should be 0.0 !", received_load);
94     if (opt::log_rate < 0)
95         return;
96     XBT_INFO("Final load after %d:%d:%d iterations: %g",
97              lb_iter, comp_iter, all_comp_iter, real_load);
98     XBT_VERB("Expected load was: %g", expected_load);
99     XBT_VERB("Total computation for this process: %g", get_comp_amount());
100     print_loads(true, xbt_log_priority_debug);
101 }
102
103 int process::run()
104 {
105     if (opt::log_rate >= 0) {
106         XBT_INFO("Initial load: %g", real_load);
107         XBT_VERB("Initial expected load: %g", expected_load);
108     }
109     XBT_VERB("Starting...");
110     mutex.acquire();
111     lb_thread->start();
112     while (lb_iter <= opt::comp_iter_delay)
113         cond.wait(mutex);
114     mutex.release();
115     double sleep_duration = opt::comp_time_delay - MSG_get_clock();
116     if (sleep_duration > 0.0)
117         MSG_process_sleep(sleep_duration);
118     compute_loop();
119     lb_thread->wait();
120     XBT_VERB("Done.");
121     return 0;
122 }
123
124 void process::load_balance_loop()
125 {
126     using std::placeholders::_1;
127
128     double next_iter_after_date = MSG_get_clock() + opt::min_lb_iter_duration;
129     while (still_running()) {
130         if (lb_iter == opt::comp_iter_delay) {
131             mutex.acquire();
132             ++lb_iter;
133             cond.signal();
134             mutex.release();
135         } else {
136             ++lb_iter;
137         }
138
139         ctrl_receive(0.0);
140
141         mutex.acquire();
142         if (!opt::bookkeeping)
143             expected_load = real_load - get_sum_of_to_send();
144         // nothing to do with opt::bookkeeping
145
146         if (opt::log_rate && lb_iter % opt::log_rate == 0) {
147             XBT_INFO("(%u:%u:%u) current load: %g",
148                      lb_iter, comp_iter, all_comp_iter, real_load);
149             XBT_VERB("... expected load: %g", expected_load);
150         }
151
152         if (expected_load > 0.0)
153             load_balance();
154
155         print_loads(true, xbt_log_priority_debug);
156
157         // send
158         comm.ctrl_flush(false);
159         std::for_each(neigh.begin(), neigh.end(),
160                       std::bind(&process::ctrl_send, this, _1));
161         prev_load_broadcast = expected_load;
162         mutex.release();
163
164         sleep_until_date(next_iter_after_date, opt::min_lb_iter_duration);
165     }
166
167     XBT_VERB("Going to finalize for %s...", __func__);
168     XBT_DEBUG("send CTRL_CLOSE to %zu neighbor%s",
169               neigh.size(), ESSE(neigh.size()));
170     std::for_each(neigh.begin(), neigh.end(),
171                   std::bind(&process::ctrl_close, this, _1));
172     while (ctrl_close_pending) {
173         comm.ctrl_flush(false);
174         XBT_DEBUG("waiting for %d CTRL_CLOSE", ctrl_close_pending);
175         ctrl_receive(-1.0);
176     }
177     comm.ctrl_flush(true);
178 }
179
180 void process::compute_loop()
181 {
182     using std::placeholders::_1;
183
184     double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
185     while (still_running()) {
186         // receive (do not block if there is something to compute)
187         data_receive(real_load > 0.0 ? 0.0 : opt::min_comp_iter_duration);
188
189         // send
190         comm.data_flush(false);
191         mutex.acquire();
192         real_load += received_load;
193         received_load = 0.0;
194         std::for_each(neigh.begin(), neigh.end(),
195                       std::bind(&process::data_send, this, _1));
196         mutex.release();
197
198         ++all_comp_iter;
199         if (real_load == 0.0)
200             continue;
201
202         // compute
203         ++comp_iter;
204         double flops = opt::comp_cost(real_load);
205         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
206         TRACE_msg_set_task_category(task, TRACE_CAT_COMP);
207         XBT_DEBUG("compute %g flop%s", flops, ESSE(flops));
208         MSG_task_execute(task);
209         add_comp_amount(flops);
210         MSG_task_destroy(task);
211
212         sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
213     }
214
215     XBT_VERB("Going to finalize for %s...", __func__);
216     finalizing = true;
217     XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
218               neigh.size(), ESSE(neigh.size()));
219     std::for_each(neigh.begin(), neigh.end(),
220                   std::bind(&process::data_close, this, _1));
221     while (data_close_pending) {
222         comm.data_flush(false);
223         XBT_DEBUG("waiting for %d DATA_CLOSE", data_close_pending);
224         data_receive(-1.0);
225     }
226     real_load += received_load;
227     received_load = 0.0;
228     total_load_running -= real_load;
229     comm.data_flush(true);
230 }
231
232 bool process::still_running()
233 {
234     static bool last_status = true;
235
236     if (!last_status) {
237         /* nop */
238
239     } else if (opt::exit_request) {
240         XBT_VERB("Global exit requested");
241         last_status = false;
242
243     } else if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
244         XBT_VERB("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
245         last_status = false;
246
247     } else if (opt::lb_maxiter && lb_iter >= opt::lb_maxiter) {
248         XBT_VERB("Reached lb_maxiter: %d/%d", lb_iter, opt::lb_maxiter);
249         last_status = false;
250
251     } else if (opt::comp_maxiter && comp_iter >= opt::comp_maxiter) {
252         XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
253         last_status = false;
254
255     } else if (opt::exit_on_close && close_received) {
256         XBT_VERB("Close received");
257         last_status = false;
258
259     } else if (real_load == 0.0 && !data_close_pending) {
260         XBT_VERB("I'm a poor lonesome process, and I have no load...");
261         last_status = false;
262
263     } else if (100.0 * total_load_running / total_load_init <=
264                opt::load_ratio_threshold) {
265         // fixme: this check should be implemented with a distributed
266         // algorithm, and not a shared global variable!
267         XBT_VERB("No more load to balance in system.");
268         last_status = false;
269     }
270
271     return last_status;
272 }
273
274 double process::get_sum_of_to_send() const
275 {
276     using std::placeholders::_1;
277     using std::placeholders::_2;
278
279     return std::accumulate(neigh.begin(), neigh.end(), 0.0,
280                            std::bind(std::plus<double>(), _1,
281                                      std::bind(&neighbor::get_to_send, _2)));
282 }
283
284 void process::load_balance()
285 {
286     if (lb_iter == 1)           // warn only once
287         XBT_WARN("process::load_balance() is a no-op!");
288 }
289
290 void process::send(neighbor& nb, double amount)
291 {
292     expected_load -= amount;
293     nb.set_to_send(nb.get_to_send() + amount);
294     nb.set_load(nb.get_load() + amount);
295 }
296
297 void process::ctrl_send(neighbor& nb)
298 {
299     double info_to_send = expected_load;
300     double debt_to_send;
301     if (opt::bookkeeping) {     // bookkeeping
302         debt_to_send = nb.get_to_send();
303         if (debt_to_send > 0.0) {
304             nb.set_to_send(0.0);
305             nb.set_debt(nb.get_debt() + debt_to_send);
306         }
307     } else {                    // !bookkeeping
308         debt_to_send = 0.0;
309     }
310     if (info_to_send != prev_load_broadcast || debt_to_send > 0.0) {
311         message* msg = new message(message::CTRL, info_to_send, debt_to_send);
312         add_ctrl_send_mesg(msg->get_size());
313         comm.ctrl_send(nb.get_ctrl_mbox(), msg);
314     }
315 }
316
317 double process::compute_load_to_send(double desired)
318 {
319     if (opt::integer_transfer)
320         desired = std::floor(desired);
321     return desired >= opt::min_transfer_amount ? desired : 0.0;
322 }
323
324 void process::data_send(neighbor& nb)
325 {
326     double load_to_send;
327     if (opt::bookkeeping) {     // bookkeeping
328         double excess_load;     // load amount we are able to send
329         if (opt::egocentric)
330             excess_load = std::max(0.0, real_load - expected_load);
331         else
332             excess_load = real_load;
333
334         double balance = nb.get_debt() - nb.get_credit();
335         load_to_send = std::min(excess_load,
336                                 std::max(0.0, balance));
337
338         // adjust load to send (rounding, truncation, etc.)
339         load_to_send = compute_load_to_send(load_to_send);
340         if (load_to_send > 0.0)
341             nb.set_debt(nb.get_debt() - load_to_send);
342     } else {                    // !bookkeeping
343         load_to_send = compute_load_to_send(nb.get_to_send());
344         if (load_to_send > 0.0)
345             nb.set_to_send(nb.get_to_send() - load_to_send);
346     }
347     real_load -= load_to_send;
348     while (load_to_send > 0.0) {
349         double amount;
350         if (opt::max_transfer_amount)
351             amount = std::min(load_to_send, opt::max_transfer_amount);
352         else
353             amount = load_to_send;
354         message* msg = new message(message::DATA, amount);
355         add_data_send_mesg(msg->get_size());
356         comm.data_send(nb.get_data_mbox(), msg);
357         load_to_send -= amount;
358     }
359 }
360
361 void process::ctrl_close(neighbor& nb)
362 {
363     comm.ctrl_send(nb.get_ctrl_mbox(), new message(message::CTRL_CLOSE, 0.0));
364 }
365
366 void process::data_close(neighbor& nb)
367 {
368     comm.data_send(nb.get_data_mbox(), new message(message::DATA_CLOSE, 0.0));
369 }
370
371 void process::ctrl_receive(double timeout)
372 {
373     message* msg;
374     m_host_t from;
375
376     XBT_DEBUG("%sblocking receive on ctrl (%g)", "\0non-" + !timeout, timeout);
377     while (ctrl_close_pending && comm.ctrl_recv(msg, from, timeout)) {
378         if (msg->get_type() != message::CTRL_CLOSE)
379             add_ctrl_recv_mesg(msg->get_size());
380         handle_message(msg, from);
381         timeout = 0.0;
382     }
383 }
384
385 void process::data_receive(double timeout)
386 {
387     message* msg;
388     m_host_t from;
389
390     XBT_DEBUG("%sblocking receive on data (%g)", "\0non-" + !timeout, timeout);
391     while (data_close_pending && comm.data_recv(msg, from, timeout)) {
392         if (msg->get_type() != message::DATA_CLOSE)
393             add_data_recv_mesg(msg->get_size());
394         handle_message(msg, from);
395         timeout = 0.0;
396     }
397 }
398
399 void process::handle_message(message* msg, m_host_t from)
400 {
401     switch (msg->get_type()) {
402     case message::CTRL: {
403         neighbor* n = rev_neigh[from];
404         n->set_load(msg->get_amount() + n->get_to_send());
405         if (opt::bookkeeping) {
406             double credit = msg->get_credit();
407             expected_load += credit;
408             n->set_credit(n->get_credit() + credit);
409         }
410         break;
411     }
412     case message::DATA: {
413         neighbor* n = rev_neigh[from];
414         double ld = msg->get_amount();
415         received_load += ld;
416         n->set_credit(n->get_credit() - ld);
417         break;
418     }
419     case message::CTRL_CLOSE:
420         ctrl_close_pending--;
421         close_received = true;
422         break;
423     case message::DATA_CLOSE:
424         data_close_pending--;
425         close_received = true;
426         break;
427     }
428     delete msg;
429 }
430
431 #define print_loads_generic(vec, verbose, logp, cat)                    \
432     if (_XBT_LOG_ISENABLEDV((*cat), logp)) {                            \
433         using std::placeholders::_1;                                    \
434         XBT_XCLOG(cat, logp, "My load: %g (real); %g (expected).  "     \
435                   "Neighbor loads:", real_load, expected_load);         \
436         std::for_each(vec.begin(), vec.end(),                           \
437                       std::bind(&neighbor::print, _1, verbose, logp, cat)); \
438     } else ((void)0)
439
440 void process::print_loads(bool verbose,
441                           e_xbt_log_priority_t logp,
442                           xbt_log_category_t cat) const
443 {
444     print_loads_generic(neigh, verbose, logp, cat);
445 }
446
447 void process::print_loads_p(bool verbose,
448                             e_xbt_log_priority_t logp,
449                             xbt_log_category_t cat) const
450 {
451     print_loads_generic(pneigh, verbose, logp, cat);
452 }
453
454 #undef print_loads_generic
455
456 // Local variables:
457 // mode: c++
458 // End: