]> AND Private Git Repository - loba.git/blob - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
In compute_loop(), wait the duration of an *lb* iteration if there is nothing to do.
[loba.git] / process.cpp
1 #include <algorithm>
2 #include <cmath>
3 #include <functional>
4 #include <iterator>
5 #include <numeric>
6 #include <stdexcept>
7 #include <sstream>
8 #include <xbt/log.h>
9 #include <xbt/time.h>
10
11 XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
12
13 #include "misc.h"
14 #include "options.h"
15 #include "tracing.h"
16
17 #include "process.h"
18
19 double process::total_load_init = 0.0;
20 double process::total_load_running = 0.0;
21 double process::total_load_exit = 0.0;
22
23 int process::process_counter = 0;
24 double process::total_load_average;
25 double process::load_diff_threshold;
26
27 namespace {
28
29     void sleep_until_date(double& date, double duration)
30     {
31         double sleep_duration = date - MSG_get_clock();
32         if (sleep_duration > 0.0)
33             MSG_process_sleep(sleep_duration);
34         date = MSG_get_clock() + duration;
35     }
36
37 }
38
39 process::process(int argc, char* argv[])
40 {
41     if (argc < 2 || !(std::istringstream(argv[1]) >> real_load))
42         throw std::invalid_argument("bad or missing initial load parameter");
43
44     double iload = std::trunc(real_load);
45     if (opt::integer_transfer && real_load != iload) {
46         XBT_WARN("Initial load %g is not an integer.  Truncate it.",
47                  real_load);
48         real_load = iload;
49     }
50
51     neigh.assign(argv + 2, argv + argc);
52
53     pneigh.reserve(neigh.size());
54     for (unsigned i = 0 ; i < neigh.size() ; i++) {
55         neighbor* ptr = &neigh[i];
56         m_host_t host = MSG_get_host_by_name(ptr->get_name());
57         pneigh.push_back(ptr);
58         rev_neigh.insert(std::make_pair(host, ptr));
59     }
60
61     // Note: there should not be race condition with the current
62     // version of Simgrid, when updating the global variables.
63
64     prev_load_broadcast = -1;   // force sending of load on first send_all()
65     expected_load = real_load;
66     total_load_running += real_load;
67     total_load_init += real_load;
68     received_load = 0.0;
69
70     convergence = -1.0;
71
72     process_counter++;
73     total_load_average = total_load_running / process_counter;
74     load_diff_threshold = (opt::load_ratio_threshold +
75                            opt::avg_load_ratio * total_load_average) / 100.0;
76
77     ctrl_close_pending = data_close_pending = neigh.size();
78     close_received = false;
79     finalizing = false;
80
81     all_comp_iter = comp_iter = lb_iter = 0;
82
83     lb_thread = new_msg_thread("loba",
84                                std::bind(&process::load_balance_loop, this));
85
86     e_xbt_log_priority_t logp = xbt_log_priority_verbose;
87     if (!LOG_ISENABLED(logp))
88         return;
89     std::ostringstream oss;
90     oss << neigh.size() << " neighbor";
91     if (!neigh.empty()) {
92         oss << ESSE(neigh.size()) << ": ";
93         std::transform(neigh.begin(), neigh.end() - 1,
94                        std::ostream_iterator<const char*>(oss, ", "),
95                        std::mem_fn(&neighbor::get_name));
96         oss << neigh.back().get_name();
97     }
98     XBT_LOG(logp, "Got %s.", oss.str().c_str());
99     print_loads(false, logp);
100 }
101
102 process::~process()
103 {
104     delete lb_thread;
105     total_load_exit += real_load;
106     xbt_assert(received_load == 0.0,
107                "received_load is %g, but should be 0.0 !", received_load);
108     if (opt::log_rate < 0)
109         return;
110     XBT_INFO("Final load after %d:%d:%d iterations: %g",
111              lb_iter, comp_iter, all_comp_iter, real_load);
112     if (convergence >= 0.0)
113         XBT_INFO("Convergence within %g%% was achieved at time %g",
114                  opt::avg_load_ratio, convergence);
115     else
116         XBT_INFO("Convergence within %g%% was not achieved",
117                  opt::avg_load_ratio);
118     XBT_VERB("Expected load was: %g", expected_load);
119     XBT_VERB("Total computation for this process: %g", get_comp_amount());
120     print_loads(true, xbt_log_priority_debug);
121 }
122
123 int process::run()
124 {
125     if (opt::log_rate >= 0) {
126         XBT_INFO("Initial load: %g", real_load);
127         XBT_VERB("Initial expected load: %g", expected_load);
128     }
129     XBT_VERB("Starting...");
130     mutex.acquire();
131     lb_thread->start();
132     while (lb_iter <= opt::comp_iter_delay)
133         cond.wait(mutex);
134     mutex.release();
135     double sleep_duration = opt::comp_time_delay - MSG_get_clock();
136     if (sleep_duration > 0.0)
137         MSG_process_sleep(sleep_duration);
138     compute_loop();
139     lb_thread->wait();
140     XBT_VERB("Done.");
141     return 0;
142 }
143
144 void process::load_balance_loop()
145 {
146     using std::placeholders::_1;
147
148     double next_iter_after_date = MSG_get_clock() + opt::min_lb_iter_duration;
149     while (still_running()) {
150         if (lb_iter == opt::comp_iter_delay) {
151             mutex.acquire();
152             ++lb_iter;
153             cond.signal();
154             mutex.release();
155         } else {
156             ++lb_iter;
157         }
158
159         ctrl_receive(0.0);
160
161         mutex.acquire();
162         if (!opt::bookkeeping)
163             expected_load = real_load - get_sum_of_to_send();
164         // nothing to do with opt::bookkeeping
165
166         if (opt::log_rate && lb_iter % opt::log_rate == 0) {
167             XBT_INFO("(%u:%u:%u) current load: %g",
168                      lb_iter, comp_iter, all_comp_iter, real_load);
169             XBT_VERB("... expected load: %g", expected_load);
170         }
171
172         if (expected_load > 0.0)
173             load_balance();
174
175         print_loads(true, xbt_log_priority_debug);
176
177         // send
178         comm.ctrl_flush(false);
179         std::for_each(neigh.begin(), neigh.end(),
180                       std::bind(&process::ctrl_send, this, _1));
181         prev_load_broadcast = expected_load;
182         mutex.release();
183
184         sleep_until_date(next_iter_after_date, opt::min_lb_iter_duration);
185     }
186
187     XBT_VERB("Going to finalize for %s...", __func__);
188     XBT_DEBUG("send CTRL_CLOSE to %zu neighbor%s",
189               neigh.size(), ESSE(neigh.size()));
190     std::for_each(neigh.begin(), neigh.end(),
191                   std::bind(&process::ctrl_close, this, _1));
192     while (ctrl_close_pending) {
193         comm.ctrl_flush(false);
194         XBT_DEBUG("waiting for %d CTRL_CLOSE", ctrl_close_pending);
195         ctrl_receive(-1.0);
196     }
197     comm.ctrl_flush(true);
198 }
199
200 void process::compute_loop()
201 {
202     using std::placeholders::_1;
203
204     double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
205     while (still_running()) {
206
207         do {
208             // receive
209             // if there is something to compute, do not block
210             // else, block the duration of an *lb* iteration
211             data_receive(real_load > 0.0 ? 0.0 : opt::min_lb_iter_duration);
212
213             // send
214             comm.data_flush(false);
215             mutex.acquire();
216             real_load += received_load;
217             received_load = 0.0;
218             std::for_each(neigh.begin(), neigh.end(),
219                           std::bind(&process::data_send, this, _1));
220             mutex.release();
221
222             ++all_comp_iter;
223
224         } while (real_load == 0.0);
225
226         convergence_check();
227
228         // compute
229         ++comp_iter;
230         double flops = opt::comp_cost(real_load);
231         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
232         TRACE_msg_set_task_category(task, TRACE_CAT_COMP);
233         XBT_DEBUG("compute %g flop%s", flops, ESSE(flops));
234         MSG_task_execute(task);
235         add_comp_amount(flops);
236         MSG_task_destroy(task);
237
238         sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
239     }
240
241     XBT_VERB("Going to finalize for %s...", __func__);
242     finalizing = true;
243     XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
244               neigh.size(), ESSE(neigh.size()));
245     std::for_each(neigh.begin(), neigh.end(),
246                   std::bind(&process::data_close, this, _1));
247     while (data_close_pending) {
248         comm.data_flush(false);
249         XBT_DEBUG("waiting for %d DATA_CLOSE", data_close_pending);
250         data_receive(-1.0);
251     }
252     real_load += received_load;
253     received_load = 0.0;
254     total_load_running -= real_load;
255     convergence_check();
256     comm.data_flush(true);
257 }
258
259 void process::convergence_check()
260 {
261     double load_diff = std::fabs(real_load - total_load_average);
262     bool converged = load_diff <= load_diff_threshold;
263
264     if (convergence >= 0.0) {
265         if (!converged) {
266             XBT_VERB("current load has diverged: %g (%.4g%%)",
267                      real_load, 100.0 * load_diff / total_load_average);
268             convergence = -1.0;
269         }
270     } else {
271         if (converged) {
272             XBT_VERB("current load has converged: %g (%.4g%%)",
273                      real_load,  100.0 * load_diff / total_load_average);
274             convergence = MSG_get_clock();
275         }
276     }
277 }
278
279 bool process::still_running()
280 {
281     static bool last_status = true;
282
283     if (!last_status) {
284         /* nop */
285
286     } else if (opt::exit_request) {
287         XBT_VERB("Global exit requested");
288         last_status = false;
289
290     } else if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
291         XBT_VERB("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
292         last_status = false;
293
294     } else if (opt::lb_maxiter && lb_iter >= opt::lb_maxiter) {
295         XBT_VERB("Reached lb_maxiter: %d/%d", lb_iter, opt::lb_maxiter);
296         last_status = false;
297
298     } else if (opt::comp_maxiter && comp_iter >= opt::comp_maxiter) {
299         XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
300         last_status = false;
301
302     } else if (opt::exit_on_close && close_received) {
303         XBT_VERB("Close received");
304         last_status = false;
305
306     } else if (real_load == 0.0 && !data_close_pending) {
307         XBT_VERB("I'm a poor lonesome process, and I have no load...");
308         last_status = false;
309
310     } else if (100.0 * total_load_running / total_load_init <=
311                opt::load_ratio_threshold) {
312         // fixme: this check should be implemented with a distributed
313         // algorithm, and not a shared global variable!
314         XBT_VERB("No more load to balance in system.");
315         last_status = false;
316     }
317
318     return last_status;
319 }
320
321 double process::get_sum_of_to_send() const
322 {
323     using std::placeholders::_1;
324     using std::placeholders::_2;
325
326     return std::accumulate(neigh.begin(), neigh.end(), 0.0,
327                            std::bind(std::plus<double>(), _1,
328                                      std::bind(&neighbor::get_to_send, _2)));
329 }
330
331 void process::load_balance()
332 {
333     if (lb_iter == 1)           // warn only once
334         XBT_WARN("process::load_balance() is a no-op!");
335 }
336
337 void process::send(neighbor& nb, double amount)
338 {
339     expected_load -= amount;
340     nb.set_to_send(nb.get_to_send() + amount);
341     nb.set_load(nb.get_load() + amount);
342 }
343
344 void process::ctrl_send(neighbor& nb)
345 {
346     double info_to_send = expected_load;
347     double debt_to_send;
348     if (opt::bookkeeping) {     // bookkeeping
349         debt_to_send = nb.get_to_send();
350         if (debt_to_send > 0.0) {
351             nb.set_to_send(0.0);
352             nb.set_debt(nb.get_debt() + debt_to_send);
353         }
354     } else {                    // !bookkeeping
355         debt_to_send = 0.0;
356     }
357     if (info_to_send != prev_load_broadcast || debt_to_send > 0.0) {
358         message* msg = new message(message::CTRL, info_to_send, debt_to_send);
359         add_ctrl_send_mesg(msg->get_size());
360         comm.ctrl_send(nb.get_ctrl_mbox(), msg);
361     }
362 }
363
364 double process::compute_load_to_send(double desired)
365 {
366     if (opt::integer_transfer)
367         desired = std::floor(desired);
368     return desired >= opt::min_transfer_amount ? desired : 0.0;
369 }
370
371 void process::data_send(neighbor& nb)
372 {
373     double load_to_send;
374     if (opt::bookkeeping) {     // bookkeeping
375         double excess_load;     // load amount we are able to send
376         if (opt::egocentric)
377             excess_load = std::max(0.0, real_load - expected_load);
378         else
379             excess_load = real_load;
380
381         double balance = nb.get_debt() - nb.get_credit();
382         load_to_send = std::min(excess_load,
383                                 std::max(0.0, balance));
384
385         // adjust load to send (rounding, truncation, etc.)
386         load_to_send = compute_load_to_send(load_to_send);
387         if (load_to_send > 0.0)
388             nb.set_debt(nb.get_debt() - load_to_send);
389     } else {                    // !bookkeeping
390         load_to_send = compute_load_to_send(nb.get_to_send());
391         if (load_to_send > 0.0)
392             nb.set_to_send(nb.get_to_send() - load_to_send);
393     }
394     real_load -= load_to_send;
395     while (load_to_send > 0.0) {
396         double amount;
397         if (opt::max_transfer_amount)
398             amount = std::min(load_to_send, opt::max_transfer_amount);
399         else
400             amount = load_to_send;
401         message* msg = new message(message::DATA, amount);
402         add_data_send_mesg(msg->get_size());
403         comm.data_send(nb.get_data_mbox(), msg);
404         load_to_send -= amount;
405     }
406 }
407
408 void process::ctrl_close(neighbor& nb)
409 {
410     comm.ctrl_send(nb.get_ctrl_mbox(), new message(message::CTRL_CLOSE, 0.0));
411 }
412
413 void process::data_close(neighbor& nb)
414 {
415     comm.data_send(nb.get_data_mbox(), new message(message::DATA_CLOSE, 0.0));
416 }
417
418 void process::ctrl_receive(double timeout)
419 {
420     message* msg;
421     m_host_t from;
422
423     XBT_DEBUG("%sblocking receive on ctrl (%g)", "\0non-" + !timeout, timeout);
424     while (ctrl_close_pending && comm.ctrl_recv(msg, from, timeout)) {
425         if (msg->get_type() != message::CTRL_CLOSE)
426             add_ctrl_recv_mesg(msg->get_size());
427         handle_message(msg, from);
428         timeout = 0.0;
429     }
430 }
431
432 void process::data_receive(double timeout)
433 {
434     message* msg;
435     m_host_t from;
436
437     XBT_DEBUG("%sblocking receive on data (%g)", "\0non-" + !timeout, timeout);
438     while (data_close_pending && comm.data_recv(msg, from, timeout)) {
439         if (msg->get_type() != message::DATA_CLOSE)
440             add_data_recv_mesg(msg->get_size());
441         handle_message(msg, from);
442         timeout = 0.0;
443     }
444 }
445
446 void process::handle_message(message* msg, m_host_t from)
447 {
448     switch (msg->get_type()) {
449     case message::CTRL: {
450         neighbor* n = rev_neigh[from];
451         n->set_load(msg->get_amount() + n->get_to_send());
452         if (opt::bookkeeping) {
453             double credit = msg->get_credit();
454             expected_load += credit;
455             n->set_credit(n->get_credit() + credit);
456         }
457         break;
458     }
459     case message::DATA: {
460         neighbor* n = rev_neigh[from];
461         double ld = msg->get_amount();
462         received_load += ld;
463         n->set_credit(n->get_credit() - ld);
464         break;
465     }
466     case message::CTRL_CLOSE:
467         ctrl_close_pending--;
468         close_received = true;
469         break;
470     case message::DATA_CLOSE:
471         data_close_pending--;
472         close_received = true;
473         break;
474     }
475     delete msg;
476 }
477
478 #define print_loads_generic(vec, verbose, logp, cat)                    \
479     if (_XBT_LOG_ISENABLEDV((*cat), logp)) {                            \
480         using std::placeholders::_1;                                    \
481         XBT_XCLOG(cat, logp, "My load: %g (real); %g (expected).  "     \
482                   "Neighbor loads:", real_load, expected_load);         \
483         std::for_each(vec.begin(), vec.end(),                           \
484                       std::bind(&neighbor::print, _1, verbose, logp, cat)); \
485     } else ((void)0)
486
487 void process::print_loads(bool verbose,
488                           e_xbt_log_priority_t logp,
489                           xbt_log_category_t cat) const
490 {
491     print_loads_generic(neigh, verbose, logp, cat);
492 }
493
494 void process::print_loads_p(bool verbose,
495                             e_xbt_log_priority_t logp,
496                             xbt_log_category_t cat) const
497 {
498     print_loads_generic(pneigh, verbose, logp, cat);
499 }
500
501 #undef print_loads_generic
502
503 // Local variables:
504 // mode: c++
505 // End: