]> AND Private Git Repository - loba.git/blob - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Now that THROWF is in SG/svn, remove compatibility hack.
[loba.git] / process.cpp
1 #include <algorithm>
2 #include <tr1/functional>
3 #include <iterator>
4 #include <numeric>
5 #include <stdexcept>
6 #include <sstream>
7 #include <xbt/log.h>
8 #include <xbt/time.h>
9
10 XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
11
12 #include "misc.h"
13 #include "options.h"
14 #include "tracing.h"
15
16 #include "process.h"
17
18 double process::total_load_init = 0.0;
19 double process::total_load_running = 0.0;
20 double process::total_load_exit = 0.0;
21
22 namespace {
23
24     void sleep_until_date(double& date, double duration)
25     {
26         double sleep_duration = date - MSG_get_clock();
27         if (sleep_duration > 0.0)
28             MSG_process_sleep(sleep_duration);
29         date = MSG_get_clock() + duration;
30     }
31
32 }
33
34 process::process(int argc, char* argv[])
35 {
36     if (argc < 2 || !(std::istringstream(argv[1]) >> real_load))
37         throw std::invalid_argument("bad or missing initial load parameter");
38
39     neigh.assign(argv + 2, argv + argc);
40
41     pneigh.reserve(neigh.size());
42     for (unsigned i = 0 ; i < neigh.size() ; i++) {
43         neighbor* ptr = &neigh[i];
44         m_host_t host = MSG_get_host_by_name(ptr->get_name());
45         pneigh.push_back(ptr);
46         rev_neigh.insert(std::make_pair(host, ptr));
47     }
48
49     prev_load_broadcast = -1;   // force sending of load on first send_all()
50     expected_load = real_load;
51     total_load_running += real_load;
52     total_load_init += real_load;
53
54     ctrl_close_pending = data_close_pending = neigh.size();
55     close_received = false;
56     finalizing = false;
57
58     comp_iter = lb_iter = 0;
59
60     lb_thread = new_msg_thread("loba",
61                                std::tr1::bind(&process::load_balance_loop,
62                                               this));
63
64     e_xbt_log_priority_t logp = xbt_log_priority_verbose;
65     if (!LOG_ISENABLED(logp))
66         return;
67     std::ostringstream oss;
68     oss << neigh.size() << " neighbor";
69     if (!neigh.empty()) {
70         oss << ESSE(neigh.size()) << ": ";
71         std::transform(neigh.begin(), neigh.end() - 1,
72                        std::ostream_iterator<const char*>(oss, ", "),
73                        std::tr1::mem_fn(&neighbor::get_name));
74         oss << neigh.back().get_name();
75     }
76     XBT_LOG(logp, "Got %s.", oss.str().c_str());
77     print_loads(false, logp);
78 }
79
80 process::~process()
81 {
82     delete lb_thread;
83     total_load_exit += real_load;
84     if (opt::log_rate < 0)
85         return;
86     XBT_INFO("Final load after %d:%d iterations: %g",
87              lb_iter, comp_iter, real_load);
88     XBT_VERB("Expected load was: %g", expected_load);
89     XBT_VERB("Total computation for this process: %g", get_comp_amount());
90 }
91
92 int process::run()
93 {
94     if (opt::log_rate >= 0) {
95         XBT_INFO("Initial load: %g", real_load);
96         XBT_VERB("Initial expected load: %g", expected_load);
97     }
98     XBT_VERB("Starting...");
99     mutex.acquire();
100     lb_thread->start();
101     while (lb_iter <= opt::comp_iter_delay)
102         cond.wait(mutex);
103     mutex.release();
104     double sleep_duration = opt::comp_time_delay - MSG_get_clock();
105     if (sleep_duration > 0.0)
106         MSG_process_sleep(sleep_duration);
107     compute_loop();
108     lb_thread->wait();
109     XBT_VERB("Done.");
110     return 0;
111 }
112
113 void process::load_balance_loop()
114 {
115     using std::tr1::bind;
116     using std::tr1::placeholders::_1;
117
118     double next_iter_after_date = MSG_get_clock() + opt::min_lb_iter_duration;
119     while (still_running()) {
120         if (lb_iter == opt::comp_iter_delay) {
121             mutex.acquire();
122             ++lb_iter;
123             cond.signal();
124             mutex.release();
125         } else {
126             ++lb_iter;
127         }
128
129         mutex.acquire();
130         if (!opt::bookkeeping)
131             expected_load = real_load - get_sum_of_to_send();
132         // nothing to do with opt::bookkeeping
133
134         if (opt::log_rate && lb_iter % opt::log_rate == 0) {
135             XBT_INFO("(%u:%u) current load: %g", lb_iter, comp_iter, real_load);
136             XBT_VERB("... expected load: %g", expected_load);
137         }
138
139         if (expected_load > 0.0)
140             load_balance();
141
142         print_loads(true, xbt_log_priority_debug);
143
144         // send
145         comm.ctrl_flush(false);
146         std::for_each(neigh.begin(), neigh.end(),
147                       bind(&process::ctrl_send, this, _1));
148         prev_load_broadcast = expected_load;
149         mutex.release();
150
151         sleep_until_date(next_iter_after_date, opt::min_lb_iter_duration);
152         ctrl_receive(0.0);
153     }
154
155     XBT_VERB("Going to finalize for %s...", __func__);
156     XBT_DEBUG("send CTRL_CLOSE to %zu neighbor%s",
157               neigh.size(), ESSE(neigh.size()));
158     std::for_each(neigh.begin(), neigh.end(),
159                   bind(&process::ctrl_close, this, _1));
160     while (ctrl_close_pending) {
161         comm.ctrl_flush(false);
162         XBT_DEBUG("waiting for %d CTRL CLOSE", ctrl_close_pending);
163         ctrl_receive(-1.0);
164     }
165     comm.ctrl_flush(true);
166 }
167
168 void process::compute_loop()
169 {
170     using std::tr1::bind;
171     using std::tr1::placeholders::_1;
172
173     double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
174     while (still_running()) {
175         // receive
176         mutex.acquire();
177         if (real_load > 0.0)
178             data_receive(0.0);
179         else
180             data_receive(opt::min_comp_iter_duration);
181         mutex.release();
182
183         // send
184         comm.data_flush(false);
185         mutex.acquire();
186         std::for_each(neigh.begin(), neigh.end(),
187                       bind(&process::data_send, this, _1));
188         mutex.release();
189
190         if (real_load == 0.0)
191             continue;
192
193         // compute
194         ++comp_iter;
195         double flops = opt::comp_cost(real_load);
196         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
197         TRACE_msg_set_task_category(task, TRACE_CAT_COMP);
198         XBT_DEBUG("compute %g flop%s", flops, ESSE(flops));
199         MSG_task_execute(task);
200         add_comp_amount(flops);
201         MSG_task_destroy(task);
202
203         sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
204     }
205
206     XBT_VERB("Going to finalize for %s...", __func__);
207     // last send, for not losing load scheduled to be sent
208     std::for_each(neigh.begin(), neigh.end(),
209                   bind(&process::data_send, this, _1));
210     finalizing = true;
211     total_load_running -= real_load;
212     XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
213               neigh.size(), ESSE(neigh.size()));
214     std::for_each(neigh.begin(), neigh.end(),
215                   bind(&process::data_close, this, _1));
216     while (data_close_pending) {
217         comm.data_flush(false);
218         XBT_DEBUG("waiting for %d DATA CLOSE", data_close_pending);
219         data_receive(-1.0);
220     }
221     comm.data_flush(true);
222 }
223
224 bool process::still_running()
225 {
226     static bool last_status = true;
227
228     if (!last_status) {
229         /* nop */
230
231     } else if (opt::exit_request) {
232         XBT_VERB("Global exit requested");
233         last_status = false;
234
235     } else if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
236         XBT_VERB("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
237         last_status = false;
238
239     } else if (opt::lb_maxiter && lb_iter >= opt::lb_maxiter) {
240         XBT_VERB("Reached lb_maxiter: %d/%d", lb_iter, opt::lb_maxiter);
241         last_status = false;
242
243     } else if (opt::comp_maxiter && comp_iter >= opt::comp_maxiter) {
244         XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
245         last_status = false;
246
247     } else if (opt::exit_on_close && close_received) {
248         XBT_VERB("Close received");
249         last_status = false;
250
251     } else if (real_load == 0.0 && !data_close_pending) {
252         XBT_VERB("I'm a poor lonesome process, and I have no load...");
253         last_status = false;
254
255     } else if (100.0 * total_load_running / total_load_init <=
256                opt::load_ratio_threshold) {
257         // fixme: this check should be implemented with a distributed
258         // algorithm, and not a shared global variable!
259         XBT_VERB("No more load to balance in system.");
260         last_status = false;
261     }
262
263     return last_status;
264 }
265
266 double process::get_sum_of_to_send() const
267 {
268     using std::tr1::bind;
269     using std::tr1::placeholders::_1;
270     using std::tr1::placeholders::_2;
271
272     return std::accumulate(neigh.begin(), neigh.end(), 0.0,
273                            bind(std::plus<double>(),
274                                 _1, bind(&neighbor::get_to_send, _2)));
275 }
276
277 void process::load_balance()
278 {
279     if (lb_iter == 1)           // warn only once
280         XBT_WARN("process::load_balance() is a no-op!");
281 }
282
283 void process::send(neighbor& nb, double amount)
284 {
285     expected_load -= amount;
286     nb.set_to_send(nb.get_to_send() + amount);
287     nb.set_load(nb.get_load() + amount);
288 }
289
290 void process::ctrl_send(neighbor& nb)
291 {
292     double info_to_send = expected_load;
293     if (info_to_send != prev_load_broadcast) {
294         message* msg = new message(message::INFO, info_to_send);
295         add_ctrl_send_mesg(msg->get_size());
296         comm.ctrl_send(nb.get_ctrl_mbox(), msg);
297     }
298     if (opt::bookkeeping) {
299         double debt_to_send = nb.get_to_send();
300         if (debt_to_send > 0.0) {
301             nb.set_to_send(0.0);
302             nb.set_debt(nb.get_debt() + debt_to_send);
303             message* msg = new message(message::CREDIT, debt_to_send);
304             add_ctrl_send_mesg(msg->get_size());
305             comm.ctrl_send(nb.get_ctrl_mbox(), msg);
306         }
307     }
308 }
309
310 void process::data_send(neighbor& nb)
311 {
312     double load_to_send;
313     if (opt::bookkeeping) {
314         load_to_send = std::min(real_load, nb.get_debt());
315         if (load_to_send >= opt::min_transfer_amount) {
316             nb.set_debt(nb.get_debt() - load_to_send);
317             real_load -= load_to_send;
318         } else {
319             load_to_send = 0.0;
320         }
321     } else {
322         load_to_send = nb.get_to_send();
323         if (load_to_send >= opt::min_transfer_amount) {
324             nb.set_to_send(0.0);
325             real_load -= load_to_send;
326         } else {
327             load_to_send = 0.0;
328         }
329     }
330     while (load_to_send > 0.0) {
331         double amount;
332         if (opt::max_transfer_amount)
333             amount = std::min(load_to_send, opt::max_transfer_amount);
334         else
335             amount = load_to_send;
336         message* msg = new message(message::LOAD, amount);
337         add_data_send_mesg(msg->get_size());
338         comm.data_send(nb.get_data_mbox(), msg);
339         load_to_send -= amount;
340     }
341 }
342
343 void process::ctrl_close(neighbor& nb)
344 {
345     comm.ctrl_send(nb.get_ctrl_mbox(), new message(message::CTRL_CLOSE, 0.0));
346 }
347
348 void process::data_close(neighbor& nb)
349 {
350     comm.data_send(nb.get_data_mbox(), new message(message::DATA_CLOSE, 0.0));
351 }
352
353 void process::ctrl_receive(double timeout)
354 {
355     message* msg;
356     m_host_t from;
357
358     XBT_DEBUG("%sblocking receive on ctrl (%g)", "\0non-" + !timeout, timeout);
359     while (ctrl_close_pending && comm.ctrl_recv(msg, from, timeout)) {
360         if (msg->get_type() != message::CTRL_CLOSE)
361             add_ctrl_recv_mesg(msg->get_size());
362         handle_message(msg, from);
363         timeout = 0.0;
364     }
365 }
366
367 void process::data_receive(double timeout)
368 {
369     message* msg;
370     m_host_t from;
371
372     XBT_DEBUG("%sblocking receive on data (%g)", "\0non-" + !timeout, timeout);
373     while (data_close_pending && comm.data_recv(msg, from, timeout)) {
374         if (msg->get_type() != message::DATA_CLOSE)
375             add_data_recv_mesg(msg->get_size());
376         handle_message(msg, from);
377         timeout = 0.0;
378     }
379 }
380
381 void process::handle_message(message* msg, m_host_t from)
382 {
383     switch (msg->get_type()) {
384     case message::INFO: {
385         neighbor* n = rev_neigh[from];
386         n->set_load(msg->get_amount() + n->get_to_send());
387         break;
388     }
389     case message::CREDIT:
390         expected_load += msg->get_amount();
391         break;
392     case message::LOAD: {
393         double ld = msg->get_amount();
394         real_load += ld;
395         if (finalizing)
396             total_load_running -= ld;
397         break;
398     }
399     case message::CTRL_CLOSE:
400         ctrl_close_pending--;
401         close_received = true;
402         break;
403     case message::DATA_CLOSE:
404         data_close_pending--;
405         close_received = true;
406         break;
407     }
408     delete msg;
409 }
410
411 #define print_loads_generic(vec, verbose, logp, cat)                    \
412     if (_XBT_LOG_ISENABLEDV((*cat), logp)) {                            \
413         using std::tr1::bind;                                           \
414         using std::tr1::placeholders::_1;                               \
415         XBT_XCLOG(cat, logp, "My load: %g (real); %g (expected).  "     \
416                   "Neighbor loads:", real_load, expected_load);         \
417         std::for_each(vec.begin(), vec.end(),                           \
418                       bind(&neighbor::print, _1, verbose, logp, cat));  \
419     } else ((void)0)
420
421 void process::print_loads(bool verbose,
422                           e_xbt_log_priority_t logp,
423                           xbt_log_category_t cat) const
424 {
425     print_loads_generic(neigh, verbose, logp, cat);
426 }
427
428 void process::print_loads_p(bool verbose,
429                             e_xbt_log_priority_t logp,
430                             xbt_log_category_t cat) const
431 {
432     print_loads_generic(pneigh, verbose, logp, cat);
433 }
434
435 #undef print_loads_generic
436
437 // Local variables:
438 // mode: c++
439 // End: