]> AND Private Git Repository - loba.git/blob - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Reverted run-all to original
[loba.git] / process.cpp
1 #include <algorithm>
2 #include <functional>
3 #include <iterator>
4 #include <numeric>
5 #include <stdexcept>
6 #include <sstream>
7 #include <xbt/log.h>
8 #include <xbt/time.h>
9
10 XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
11
12 #include "misc.h"
13 #include "options.h"
14 #include "tracing.h"
15
16 #include "process.h"
17
18 double process::total_load_init = 0.0;
19 double process::total_load_running = 0.0;
20 double process::total_load_exit = 0.0;
21
22 namespace {
23
24     void sleep_until_date(double& date, double duration)
25     {
26         double sleep_duration = date - MSG_get_clock();
27         if (sleep_duration > 0.0)
28             MSG_process_sleep(sleep_duration);
29         date = MSG_get_clock() + duration;
30     }
31
32 }
33
34 process::process(int argc, char* argv[])
35 {
36     if (argc < 2 || !(std::istringstream(argv[1]) >> real_load))
37         throw std::invalid_argument("bad or missing initial load parameter");
38
39     neigh.assign(argv + 2, argv + argc);
40
41     pneigh.reserve(neigh.size());
42     for (unsigned i = 0 ; i < neigh.size() ; i++) {
43         neighbor* ptr = &neigh[i];
44         m_host_t host = MSG_get_host_by_name(ptr->get_name());
45         pneigh.push_back(ptr);
46         rev_neigh.insert(std::make_pair(host, ptr));
47     }
48
49     prev_load_broadcast = -1;   // force sending of load on first send_all()
50     expected_load = real_load;
51     total_load_running += real_load;
52     total_load_init += real_load;
53     received_load = 0.0;
54
55     ctrl_close_pending = data_close_pending = neigh.size();
56     close_received = false;
57     finalizing = false;
58
59     comp_iter = lb_iter = 0;
60
61     lb_thread = new_msg_thread("loba",
62                                std::bind(&process::load_balance_loop, this));
63
64     e_xbt_log_priority_t logp = xbt_log_priority_verbose;
65     if (!LOG_ISENABLED(logp))
66         return;
67     std::ostringstream oss;
68     oss << neigh.size() << " neighbor";
69     if (!neigh.empty()) {
70         oss << ESSE(neigh.size()) << ": ";
71         std::transform(neigh.begin(), neigh.end() - 1,
72                        std::ostream_iterator<const char*>(oss, ", "),
73                        std::mem_fn(&neighbor::get_name));
74         oss << neigh.back().get_name();
75     }
76     XBT_LOG(logp, "Got %s.", oss.str().c_str());
77     print_loads(false, logp);
78 }
79
80 process::~process()
81 {
82     delete lb_thread;
83     total_load_exit += real_load;
84     xbt_assert(received_load == 0.0,
85                "received_load is %g, but should be 0.0 !", received_load);
86     if (opt::log_rate < 0)
87         return;
88     XBT_INFO("Final load after %d:%d iterations: %g",
89              lb_iter, comp_iter, real_load);
90     XBT_VERB("Expected load was: %g", expected_load);
91     XBT_VERB("Total computation for this process: %g", get_comp_amount());
92 }
93
94 int process::run()
95 {
96     if (opt::log_rate >= 0) {
97         XBT_INFO("Initial load: %g", real_load);
98         XBT_VERB("Initial expected load: %g", expected_load);
99     }
100     XBT_VERB("Starting...");
101     mutex.acquire();
102     lb_thread->start();
103     while (lb_iter <= opt::comp_iter_delay)
104         cond.wait(mutex);
105     mutex.release();
106     double sleep_duration = opt::comp_time_delay - MSG_get_clock();
107     if (sleep_duration > 0.0)
108         MSG_process_sleep(sleep_duration);
109     compute_loop();
110     lb_thread->wait();
111     XBT_VERB("Done.");
112     return 0;
113 }
114
115 void process::load_balance_loop()
116 {
117     using std::placeholders::_1;
118
119     double next_iter_after_date = MSG_get_clock() + opt::min_lb_iter_duration;
120     while (still_running()) {
121         if (lb_iter == opt::comp_iter_delay) {
122             mutex.acquire();
123             ++lb_iter;
124             cond.signal();
125             mutex.release();
126         } else {
127             ++lb_iter;
128         }
129
130         mutex.acquire();
131         if (!opt::bookkeeping)
132             expected_load = real_load - get_sum_of_to_send();
133         // nothing to do with opt::bookkeeping
134
135         if (opt::log_rate && lb_iter % opt::log_rate == 0) {
136             XBT_INFO("(%u:%u) current load: %g", lb_iter, comp_iter, real_load);
137             XBT_VERB("... expected load: %g", expected_load);
138         }
139
140         if (expected_load > 0.0)
141             load_balance();
142
143         print_loads(true, xbt_log_priority_debug);
144
145         // send
146         comm.ctrl_flush(false);
147         std::for_each(neigh.begin(), neigh.end(),
148                       std::bind(&process::ctrl_send, this, _1));
149         prev_load_broadcast = expected_load;
150         mutex.release();
151
152         sleep_until_date(next_iter_after_date, opt::min_lb_iter_duration);
153         ctrl_receive(0.0);
154     }
155
156     XBT_VERB("Going to finalize for %s...", __func__);
157     XBT_DEBUG("send CTRL_CLOSE to %zu neighbor%s",
158               neigh.size(), ESSE(neigh.size()));
159     std::for_each(neigh.begin(), neigh.end(),
160                   std::bind(&process::ctrl_close, this, _1));
161     while (ctrl_close_pending) {
162         comm.ctrl_flush(false);
163         XBT_DEBUG("waiting for %d CTRL_CLOSE", ctrl_close_pending);
164         ctrl_receive(-1.0);
165     }
166     comm.ctrl_flush(true);
167 }
168
169 void process::compute_loop()
170 {
171     using std::placeholders::_1;
172
173     double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
174     while (still_running()) {
175         // receive (do not block if there is something to compute)
176         data_receive(real_load > 0.0 ? 0.0 : opt::min_comp_iter_duration);
177
178         // send
179         comm.data_flush(false);
180         mutex.acquire();
181         real_load += received_load;
182         received_load = 0.0;
183         std::for_each(neigh.begin(), neigh.end(),
184                       std::bind(&process::data_send, this, _1));
185         mutex.release();
186
187         if (real_load == 0.0)
188             continue;
189
190         // compute
191         ++comp_iter;
192         double flops = opt::comp_cost(real_load);
193         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
194         TRACE_msg_set_task_category(task, TRACE_CAT_COMP);
195         XBT_DEBUG("compute %g flop%s", flops, ESSE(flops));
196         MSG_task_execute(task);
197         add_comp_amount(flops);
198         MSG_task_destroy(task);
199
200         sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
201     }
202
203     XBT_VERB("Going to finalize for %s...", __func__);
204     finalizing = true;
205     XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
206               neigh.size(), ESSE(neigh.size()));
207     std::for_each(neigh.begin(), neigh.end(),
208                   std::bind(&process::data_close, this, _1));
209     while (data_close_pending) {
210         comm.data_flush(false);
211         XBT_DEBUG("waiting for %d DATA_CLOSE", data_close_pending);
212         data_receive(-1.0);
213     }
214     real_load += received_load;
215     received_load = 0.0;
216     total_load_running -= real_load;
217     comm.data_flush(true);
218 }
219
220 bool process::still_running()
221 {
222     static bool last_status = true;
223
224     if (!last_status) {
225         /* nop */
226
227     } else if (opt::exit_request) {
228         XBT_VERB("Global exit requested");
229         last_status = false;
230
231     } else if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
232         XBT_VERB("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
233         last_status = false;
234
235     } else if (opt::lb_maxiter && lb_iter >= opt::lb_maxiter) {
236         XBT_VERB("Reached lb_maxiter: %d/%d", lb_iter, opt::lb_maxiter);
237         last_status = false;
238
239     } else if (opt::comp_maxiter && comp_iter >= opt::comp_maxiter) {
240         XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
241         last_status = false;
242
243     } else if (opt::exit_on_close && close_received) {
244         XBT_VERB("Close received");
245         last_status = false;
246
247     } else if (real_load == 0.0 && !data_close_pending) {
248         XBT_VERB("I'm a poor lonesome process, and I have no load...");
249         last_status = false;
250
251     } else if (100.0 * total_load_running / total_load_init <=
252                opt::load_ratio_threshold) {
253         // fixme: this check should be implemented with a distributed
254         // algorithm, and not a shared global variable!
255         XBT_VERB("No more load to balance in system.");
256         last_status = false;
257     }
258
259     return last_status;
260 }
261
262 double process::get_sum_of_to_send() const
263 {
264     using std::placeholders::_1;
265     using std::placeholders::_2;
266
267     return std::accumulate(neigh.begin(), neigh.end(), 0.0,
268                            std::bind(std::plus<double>(), _1,
269                                      std::bind(&neighbor::get_to_send, _2)));
270 }
271
272 void process::load_balance()
273 {
274     if (lb_iter == 1)           // warn only once
275         XBT_WARN("process::load_balance() is a no-op!");
276 }
277
278 void process::send(neighbor& nb, double amount)
279 {
280     expected_load -= amount;
281     nb.set_to_send(nb.get_to_send() + amount);
282     nb.set_load(nb.get_load() + amount);
283 }
284
285 void process::ctrl_send(neighbor& nb)
286 {
287     double info_to_send = expected_load;
288     double debt_to_send;
289     if (opt::bookkeeping) {     // bookkeeping
290         debt_to_send = nb.get_to_send();
291         if (debt_to_send > 0.0) {
292             nb.set_to_send(0.0);
293             nb.set_debt(nb.get_debt() + debt_to_send);
294         }
295     } else {                    // !bookkeeping
296         debt_to_send = 0.0;
297     }
298     if (info_to_send != prev_load_broadcast || debt_to_send > 0.0) {
299         message* msg = new message(message::CTRL, info_to_send, debt_to_send);
300         add_ctrl_send_mesg(msg->get_size());
301         comm.ctrl_send(nb.get_ctrl_mbox(), msg);
302     }
303 }
304
305 void process::data_send(neighbor& nb)
306 {
307     double load_to_send;
308     if (opt::bookkeeping) {
309         load_to_send = std::min(real_load, nb.get_debt());
310         if (load_to_send >= opt::min_transfer_amount) {
311             nb.set_debt(nb.get_debt() - load_to_send);
312             real_load -= load_to_send;
313         } else {
314             load_to_send = 0.0;
315         }
316     } else {
317         load_to_send = nb.get_to_send();
318         if (load_to_send >= opt::min_transfer_amount) {
319             nb.set_to_send(0.0);
320             real_load -= load_to_send;
321         } else {
322             load_to_send = 0.0;
323         }
324     }
325     while (load_to_send > 0.0) {
326         double amount;
327         if (opt::max_transfer_amount)
328             amount = std::min(load_to_send, opt::max_transfer_amount);
329         else
330             amount = load_to_send;
331         message* msg = new message(message::DATA, amount);
332         add_data_send_mesg(msg->get_size());
333         comm.data_send(nb.get_data_mbox(), msg);
334         load_to_send -= amount;
335     }
336 }
337
338 void process::ctrl_close(neighbor& nb)
339 {
340     comm.ctrl_send(nb.get_ctrl_mbox(), new message(message::CTRL_CLOSE, 0.0));
341 }
342
343 void process::data_close(neighbor& nb)
344 {
345     comm.data_send(nb.get_data_mbox(), new message(message::DATA_CLOSE, 0.0));
346 }
347
348 void process::ctrl_receive(double timeout)
349 {
350     message* msg;
351     m_host_t from;
352
353     XBT_DEBUG("%sblocking receive on ctrl (%g)", "\0non-" + !timeout, timeout);
354     while (ctrl_close_pending && comm.ctrl_recv(msg, from, timeout)) {
355         if (msg->get_type() != message::CTRL_CLOSE)
356             add_ctrl_recv_mesg(msg->get_size());
357         handle_message(msg, from);
358         timeout = 0.0;
359     }
360 }
361
362 void process::data_receive(double timeout)
363 {
364     message* msg;
365     m_host_t from;
366
367     XBT_DEBUG("%sblocking receive on data (%g)", "\0non-" + !timeout, timeout);
368     while (data_close_pending && comm.data_recv(msg, from, timeout)) {
369         if (msg->get_type() != message::DATA_CLOSE)
370             add_data_recv_mesg(msg->get_size());
371         handle_message(msg, from);
372         timeout = 0.0;
373     }
374 }
375
376 void process::handle_message(message* msg, m_host_t from)
377 {
378     switch (msg->get_type()) {
379     case message::CTRL: {
380         neighbor* n = rev_neigh[from];
381         n->set_load(msg->get_amount() + n->get_to_send());
382         expected_load += msg->get_credit(); // may be 0.0 if !opt::bookkeeping
383         break;
384     }
385     case message::DATA: {
386         double ld = msg->get_amount();
387         received_load += ld;
388         break;
389     }
390     case message::CTRL_CLOSE:
391         ctrl_close_pending--;
392         close_received = true;
393         break;
394     case message::DATA_CLOSE:
395         data_close_pending--;
396         close_received = true;
397         break;
398     }
399     delete msg;
400 }
401
402 #define print_loads_generic(vec, verbose, logp, cat)                    \
403     if (_XBT_LOG_ISENABLEDV((*cat), logp)) {                            \
404         using std::placeholders::_1;                                    \
405         XBT_XCLOG(cat, logp, "My load: %g (real); %g (expected).  "     \
406                   "Neighbor loads:", real_load, expected_load);         \
407         std::for_each(vec.begin(), vec.end(),                           \
408                       std::bind(&neighbor::print, _1, verbose, logp, cat)); \
409     } else ((void)0)
410
411 void process::print_loads(bool verbose,
412                           e_xbt_log_priority_t logp,
413                           xbt_log_category_t cat) const
414 {
415     print_loads_generic(neigh, verbose, logp, cat);
416 }
417
418 void process::print_loads_p(bool verbose,
419                             e_xbt_log_priority_t logp,
420                             xbt_log_category_t cat) const
421 {
422     print_loads_generic(pneigh, verbose, logp, cat);
423 }
424
425 #undef print_loads_generic
426
427 // Local variables:
428 // mode: c++
429 // End: