]> AND Private Git Repository - loba.git/blob - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Add a comment about idle duration.
[loba.git] / process.cpp
1 #include <algorithm>
2 #include <cmath>
3 #include <functional>
4 #include <iterator>
5 #include <numeric>
6 #include <stdexcept>
7 #include <sstream>
8 #include <xbt/log.h>
9 #include <xbt/time.h>
10
11 XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
12
13 #include "misc.h"
14 #include "options.h"
15 #include "tracing.h"
16
17 #include "process.h"
18
19 double process::total_load_init = 0.0;
20 double process::total_load_running = 0.0;
21 double process::total_load_exit = 0.0;
22
23 int process::process_counter = 0;
24 double process::total_load_average;
25 double process::load_diff_threshold;
26
27 namespace {
28
29     void sleep_until_date(double& date, double duration)
30     {
31         double sleep_duration = date - MSG_get_clock();
32         if (sleep_duration > 0.0)
33             MSG_process_sleep(sleep_duration);
34         date = MSG_get_clock() + duration;
35     }
36
37 }
38
39 process::process(int argc, char* argv[])
40 {
41     if (argc < 2 || !(std::istringstream(argv[1]) >> real_load))
42         throw std::invalid_argument("bad or missing initial load parameter");
43
44     double iload = std::trunc(real_load);
45     if (opt::integer_transfer && real_load != iload) {
46         XBT_WARN("Initial load %g is not an integer.  Truncate it.",
47                  real_load);
48         real_load = iload;
49     }
50
51     neigh.assign(argv + 2, argv + argc);
52
53     pneigh.reserve(neigh.size());
54     for (unsigned i = 0 ; i < neigh.size() ; i++) {
55         neighbor* ptr = &neigh[i];
56         m_host_t host = MSG_get_host_by_name(ptr->get_name());
57         pneigh.push_back(ptr);
58         rev_neigh.insert(std::make_pair(host, ptr));
59     }
60
61     // Note: there should not be race condition with the current
62     // version of Simgrid, when updating the global variables.
63
64     prev_load_broadcast = -1;   // force sending of load on first send_all()
65     expected_load = real_load;
66     total_load_running += real_load;
67     total_load_init += real_load;
68     received_load = 0.0;
69
70     idle_duration = 0.0;
71     convergence = -1.0;
72
73     process_counter++;
74     total_load_average = total_load_running / process_counter;
75     load_diff_threshold = (opt::load_ratio_threshold +
76                            opt::avg_load_ratio * total_load_average) / 100.0;
77
78     ctrl_close_pending = data_close_pending = neigh.size();
79     close_received = false;
80     finalizing = false;
81
82     all_comp_iter = comp_iter = lb_iter = 0;
83
84     lb_thread = new_msg_thread("loba",
85                                std::bind(&process::load_balance_loop, this));
86
87     e_xbt_log_priority_t logp = xbt_log_priority_verbose;
88     if (!LOG_ISENABLED(logp))
89         return;
90     std::ostringstream oss;
91     oss << neigh.size() << " neighbor";
92     if (!neigh.empty()) {
93         oss << ESSE(neigh.size()) << ": ";
94         std::transform(neigh.begin(), neigh.end() - 1,
95                        std::ostream_iterator<const char*>(oss, ", "),
96                        std::mem_fn(&neighbor::get_name));
97         oss << neigh.back().get_name();
98     }
99     XBT_LOG(logp, "Got %s.", oss.str().c_str());
100     print_loads(false, logp);
101 }
102
103 process::~process()
104 {
105     delete lb_thread;
106     total_load_exit += real_load;
107     xbt_assert(received_load == 0.0,
108                "received_load is %g, but should be 0.0 !", received_load);
109     if (opt::log_rate < 0)
110         return;
111     XBT_INFO("Final load after %d:%d:%d iterations: %g",
112              lb_iter, comp_iter, all_comp_iter, real_load);
113     if (convergence >= 0.0)
114         XBT_INFO("Convergence within %g%% was achieved at time %g",
115                  opt::avg_load_ratio, convergence);
116     else
117         XBT_INFO("Convergence within %g%% was not achieved",
118                  opt::avg_load_ratio);
119     XBT_VERB("Expected load was: %g", expected_load);
120     XBT_VERB("Total computation for this process: %g", get_comp_amount());
121     print_loads(true, xbt_log_priority_debug);
122 }
123
124 int process::run()
125 {
126     if (opt::log_rate >= 0) {
127         XBT_INFO("Initial load: %g", real_load);
128         XBT_VERB("Initial expected load: %g", expected_load);
129     }
130     XBT_VERB("Starting...");
131     mutex.acquire();
132     lb_thread->start();
133     while (lb_iter <= opt::comp_iter_delay)
134         cond.wait(mutex);
135     mutex.release();
136     double sleep_duration = opt::comp_time_delay - MSG_get_clock();
137     if (sleep_duration > 0.0)
138         MSG_process_sleep(sleep_duration);
139     compute_loop();
140     lb_thread->wait();
141     XBT_VERB("Done.");
142     return 0;
143 }
144
145 void process::load_balance_loop()
146 {
147     using std::placeholders::_1;
148
149     double next_iter_after_date = MSG_get_clock() + opt::min_lb_iter_duration;
150     while (still_running()) {
151         if (lb_iter == opt::comp_iter_delay) {
152             mutex.acquire();
153             ++lb_iter;
154             cond.signal();
155             mutex.release();
156         } else {
157             ++lb_iter;
158         }
159
160         ctrl_receive(0.0);
161
162         mutex.acquire();
163         if (!opt::bookkeeping)
164             expected_load = real_load - get_sum_of_to_send();
165         // nothing to do with opt::bookkeeping
166
167         if (opt::log_rate && lb_iter % opt::log_rate == 0) {
168             XBT_INFO("(%u:%u:%u) current load: %g",
169                      lb_iter, comp_iter, all_comp_iter, real_load);
170             XBT_VERB("... expected load: %g", expected_load);
171         }
172
173         if (expected_load > 0.0)
174             load_balance();
175
176         print_loads(true, xbt_log_priority_debug);
177
178         // send
179         comm.ctrl_flush(false);
180         std::for_each(neigh.begin(), neigh.end(),
181                       std::bind(&process::ctrl_send, this, _1));
182         prev_load_broadcast = expected_load;
183         mutex.release();
184
185         sleep_until_date(next_iter_after_date, opt::min_lb_iter_duration);
186     }
187
188     XBT_VERB("Going to finalize for %s...", __func__);
189     XBT_DEBUG("send CTRL_CLOSE to %zu neighbor%s",
190               neigh.size(), ESSE(neigh.size()));
191     std::for_each(neigh.begin(), neigh.end(),
192                   std::bind(&process::ctrl_close, this, _1));
193     while (ctrl_close_pending) {
194         comm.ctrl_flush(false);
195         XBT_DEBUG("waiting for %d CTRL_CLOSE", ctrl_close_pending);
196         ctrl_receive(-1.0);
197     }
198     comm.ctrl_flush(true);
199 }
200
201 void process::compute_loop()
202 {
203     using std::placeholders::_1;
204
205     double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
206     double idle_since_date = 0.0;
207     while (still_running()) {
208
209         do {
210             // receive
211             // if there is something to compute, do not block
212             // else, block the duration of an *lb* iteration
213             data_receive(real_load > 0.0 ? 0.0 : opt::min_lb_iter_duration);
214
215             // send
216             comm.data_flush(false);
217             mutex.acquire();
218             real_load += received_load;
219             received_load = 0.0;
220             std::for_each(neigh.begin(), neigh.end(),
221                           std::bind(&process::data_send, this, _1));
222             mutex.release();
223
224             ++all_comp_iter;
225
226         } while (real_load == 0.0);
227
228         convergence_check();
229
230         // compute
231         idle_duration += MSG_get_clock() - idle_since_date;
232         ++comp_iter;
233         double flops = opt::comp_cost(real_load);
234         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
235         TRACE_msg_set_task_category(task, TRACE_CAT_COMP);
236         XBT_DEBUG("compute %g flop%s", flops, ESSE(flops));
237         MSG_task_execute(task);
238         add_comp_amount(flops);
239         MSG_task_destroy(task);
240
241         idle_since_date = MSG_get_clock();
242
243         sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
244     }
245
246     XBT_VERB("Going to finalize for %s...", __func__);
247     // Note: idle duration is not counted during finalization
248     finalizing = true;
249     XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
250               neigh.size(), ESSE(neigh.size()));
251     std::for_each(neigh.begin(), neigh.end(),
252                   std::bind(&process::data_close, this, _1));
253     while (data_close_pending) {
254         comm.data_flush(false);
255         XBT_DEBUG("waiting for %d DATA_CLOSE", data_close_pending);
256         data_receive(-1.0);
257     }
258     real_load += received_load;
259     received_load = 0.0;
260     total_load_running -= real_load;
261     convergence_check();
262     comm.data_flush(true);
263 }
264
265 void process::convergence_check()
266 {
267     double load_diff = std::fabs(real_load - total_load_average);
268     bool converged = load_diff <= load_diff_threshold;
269
270     if (convergence >= 0.0) {
271         if (!converged) {
272             XBT_VERB("current load has diverged: %g (%.4g%%)",
273                      real_load, 100.0 * load_diff / total_load_average);
274             convergence = -1.0;
275         }
276     } else {
277         if (converged) {
278             XBT_VERB("current load has converged: %g (%.4g%%)",
279                      real_load,  100.0 * load_diff / total_load_average);
280             convergence = MSG_get_clock();
281         }
282     }
283 }
284
285 bool process::still_running()
286 {
287     static bool last_status = true;
288
289     if (!last_status) {
290         /* nop */
291
292     } else if (opt::exit_request) {
293         XBT_VERB("Global exit requested");
294         last_status = false;
295
296     } else if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
297         XBT_VERB("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
298         last_status = false;
299
300     } else if (opt::lb_maxiter && lb_iter >= opt::lb_maxiter) {
301         XBT_VERB("Reached lb_maxiter: %d/%d", lb_iter, opt::lb_maxiter);
302         last_status = false;
303
304     } else if (opt::comp_maxiter && comp_iter >= opt::comp_maxiter) {
305         XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
306         last_status = false;
307
308     } else if (opt::exit_on_close && close_received) {
309         XBT_VERB("Close received");
310         last_status = false;
311
312     } else if (real_load == 0.0 && !data_close_pending) {
313         XBT_VERB("I'm a poor lonesome process, and I have no load...");
314         last_status = false;
315
316     } else if (100.0 * total_load_running / total_load_init <=
317                opt::load_ratio_threshold) {
318         // fixme: this check should be implemented with a distributed
319         // algorithm, and not a shared global variable!
320         XBT_VERB("No more load to balance in system.");
321         last_status = false;
322     }
323
324     return last_status;
325 }
326
327 double process::get_sum_of_to_send() const
328 {
329     using std::placeholders::_1;
330     using std::placeholders::_2;
331
332     return std::accumulate(neigh.begin(), neigh.end(), 0.0,
333                            std::bind(std::plus<double>(), _1,
334                                      std::bind(&neighbor::get_to_send, _2)));
335 }
336
337 void process::load_balance()
338 {
339     if (lb_iter == 1)           // warn only once
340         XBT_WARN("process::load_balance() is a no-op!");
341 }
342
343 void process::send(neighbor& nb, double amount)
344 {
345     expected_load -= amount;
346     nb.set_to_send(nb.get_to_send() + amount);
347     nb.set_load(nb.get_load() + amount);
348 }
349
350 void process::ctrl_send(neighbor& nb)
351 {
352     double info_to_send = expected_load;
353     double debt_to_send;
354     if (opt::bookkeeping) {     // bookkeeping
355         debt_to_send = nb.get_to_send();
356         if (debt_to_send > 0.0) {
357             nb.set_to_send(0.0);
358             nb.set_debt(nb.get_debt() + debt_to_send);
359         }
360     } else {                    // !bookkeeping
361         debt_to_send = 0.0;
362     }
363     if (info_to_send != prev_load_broadcast || debt_to_send > 0.0) {
364         message* msg = new message(message::CTRL, info_to_send, debt_to_send);
365         add_ctrl_send_mesg(msg->get_size());
366         comm.ctrl_send(nb.get_ctrl_mbox(), msg);
367     }
368 }
369
370 double process::compute_load_to_send(double desired)
371 {
372     if (opt::integer_transfer)
373         desired = std::floor(desired);
374     return desired >= opt::min_transfer_amount ? desired : 0.0;
375 }
376
377 void process::data_send(neighbor& nb)
378 {
379     double load_to_send;
380     if (opt::bookkeeping) {     // bookkeeping
381         double excess_load;     // load amount we are able to send
382         if (opt::egocentric)
383             excess_load = std::max(0.0, real_load - expected_load);
384         else
385             excess_load = real_load;
386
387         double balance = nb.get_debt() - nb.get_credit();
388         load_to_send = std::min(excess_load,
389                                 std::max(0.0, balance));
390
391         // adjust load to send (rounding, truncation, etc.)
392         load_to_send = compute_load_to_send(load_to_send);
393         if (load_to_send > 0.0)
394             nb.set_debt(nb.get_debt() - load_to_send);
395     } else {                    // !bookkeeping
396         load_to_send = compute_load_to_send(nb.get_to_send());
397         if (load_to_send > 0.0)
398             nb.set_to_send(nb.get_to_send() - load_to_send);
399     }
400     real_load -= load_to_send;
401     while (load_to_send > 0.0) {
402         double amount;
403         if (opt::max_transfer_amount)
404             amount = std::min(load_to_send, opt::max_transfer_amount);
405         else
406             amount = load_to_send;
407         message* msg = new message(message::DATA, amount);
408         add_data_send_mesg(msg->get_size());
409         comm.data_send(nb.get_data_mbox(), msg);
410         load_to_send -= amount;
411     }
412 }
413
414 void process::ctrl_close(neighbor& nb)
415 {
416     comm.ctrl_send(nb.get_ctrl_mbox(), new message(message::CTRL_CLOSE, 0.0));
417 }
418
419 void process::data_close(neighbor& nb)
420 {
421     comm.data_send(nb.get_data_mbox(), new message(message::DATA_CLOSE, 0.0));
422 }
423
424 void process::ctrl_receive(double timeout)
425 {
426     message* msg;
427     m_host_t from;
428
429     XBT_DEBUG("%sblocking receive on ctrl (%g)", "\0non-" + !timeout, timeout);
430     while (ctrl_close_pending && comm.ctrl_recv(msg, from, timeout)) {
431         if (msg->get_type() != message::CTRL_CLOSE)
432             add_ctrl_recv_mesg(msg->get_size());
433         handle_message(msg, from);
434         timeout = 0.0;
435     }
436 }
437
438 void process::data_receive(double timeout)
439 {
440     message* msg;
441     m_host_t from;
442
443     XBT_DEBUG("%sblocking receive on data (%g)", "\0non-" + !timeout, timeout);
444     while (data_close_pending && comm.data_recv(msg, from, timeout)) {
445         if (msg->get_type() != message::DATA_CLOSE)
446             add_data_recv_mesg(msg->get_size());
447         handle_message(msg, from);
448         timeout = 0.0;
449     }
450 }
451
452 void process::handle_message(message* msg, m_host_t from)
453 {
454     switch (msg->get_type()) {
455     case message::CTRL: {
456         neighbor* n = rev_neigh[from];
457         n->set_load(msg->get_amount() + n->get_to_send());
458         if (opt::bookkeeping) {
459             double credit = msg->get_credit();
460             expected_load += credit;
461             n->set_credit(n->get_credit() + credit);
462         }
463         break;
464     }
465     case message::DATA: {
466         neighbor* n = rev_neigh[from];
467         double ld = msg->get_amount();
468         received_load += ld;
469         n->set_credit(n->get_credit() - ld);
470         break;
471     }
472     case message::CTRL_CLOSE:
473         ctrl_close_pending--;
474         close_received = true;
475         break;
476     case message::DATA_CLOSE:
477         data_close_pending--;
478         close_received = true;
479         break;
480     }
481     delete msg;
482 }
483
484 #define print_loads_generic(vec, verbose, logp, cat)                    \
485     if (_XBT_LOG_ISENABLEDV((*cat), logp)) {                            \
486         using std::placeholders::_1;                                    \
487         XBT_XCLOG(cat, logp, "My load: %g (real); %g (expected).  "     \
488                   "Neighbor loads:", real_load, expected_load);         \
489         std::for_each(vec.begin(), vec.end(),                           \
490                       std::bind(&neighbor::print, _1, verbose, logp, cat)); \
491     } else ((void)0)
492
493 void process::print_loads(bool verbose,
494                           e_xbt_log_priority_t logp,
495                           xbt_log_category_t cat) const
496 {
497     print_loads_generic(neigh, verbose, logp, cat);
498 }
499
500 void process::print_loads_p(bool verbose,
501                             e_xbt_log_priority_t logp,
502                             xbt_log_category_t cat) const
503 {
504     print_loads_generic(pneigh, verbose, logp, cat);
505 }
506
507 #undef print_loads_generic
508
509 // Local variables:
510 // mode: c++
511 // End: