EXIT_FAILURE_CLEAN = 0x08, // error at cleanup
};
+ std::vector<double> comps;
+ double comp_total;
+ double comp_avg;
+ double comp_stddev;
+
std::vector<double> loads;
- double load_stddev;
double load_avg;
+ double load_stddev;
}
static int simulation_main(int argc, char* argv[])
try {
proc = opt::loba_algorithms.new_instance(opt::loba_algo, argc, argv);
result = proc->run();
+ comps.push_back(proc->get_comp());
loads.push_back(proc->get_load());
delete proc;
}
total_running, running_ratio);
}
-static void compute_load_imbalance()
+static void statistics(const std::vector<double>& vec,
+ double* sum, double* avg, double* stddev)
{
using std::tr1::bind;
using std::tr1::placeholders::_1;
- unsigned n = loads.size();
- load_avg = std::accumulate(loads.begin(), loads.end(), 0.0) / n;
-
- std::vector<double> diff(loads);
- std::transform(diff.begin(), diff.end(), diff.begin(),
- bind(std::minus<double>(), _1, load_avg));
- double epsilon = std::accumulate(diff.begin(), diff.end(), 0.0);
- double square_sum = std::inner_product(diff.begin(), diff.end(),
- diff.begin(), 0.0);
- double variance = (square_sum - (epsilon * epsilon) / n) / n;
- load_stddev = sqrt(variance);
+ unsigned n = vec.size();
+ double vec_sum = std::accumulate(vec.begin(), vec.end(), 0.0);
+ double vec_avg = vec_sum / n;
+
+ if (sum)
+ *sum = vec_sum;
+ if (avg)
+ *avg = vec_avg;
+
+ if (stddev) {
+ std::vector<double> diff(vec);
+ std::transform(diff.begin(), diff.end(), diff.begin(),
+ bind(std::minus<double>(), _1, vec_avg));
+ double epsilon = std::accumulate(diff.begin(), diff.end(), 0.0);
+ double square_sum = std::inner_product(diff.begin(), diff.end(),
+ diff.begin(), 0.0);
+ double variance = (square_sum - (epsilon * epsilon) / n) / n;
+ *stddev = sqrt(variance);
+ }
+}
+
+static void compute_metrics()
+{
+ statistics(comps, &comp_total, &comp_avg, &comp_stddev);
+ statistics(loads, NULL, &load_avg, &load_stddev);
}
int main(int argc, char* argv[])
res = MSG_main();
simulated_time = MSG_get_clock();
INFO1("Simulation ended at %f.", simulated_time);
- check_for_lost_load();
- compute_load_imbalance();
if (res != MSG_OK)
THROW1(0, 0, "MSG_main() failed with status %#x", res);
// Report final simulation status.
if (simulated_time >= 0.0) {
simulation_time.stop();
+ check_for_lost_load();
+ compute_metrics();
INFO0(",----[ Results ]");
- INFO2("| Load avg./stddev. at exit.: %g / %g", load_avg, load_stddev);
- INFO1("| Total simulated time......: %g", simulated_time);
- INFO1("| Total simulation time.....: %g", simulation_time.duration());
+ INFO2("| Load avg./stddev. at exit..............: %g / %g",
+ load_avg, load_stddev);
+ INFO3("| Computation total/avg./stddev. at exit.: %g / %g / %g",
+ comp_total, comp_avg, comp_stddev);
+ INFO1("| Total simulated time...................: %g", simulated_time);
+ INFO1("| Total simulation time..................: %g",
+ simulation_time.duration());
INFO0("`----");
}
if (exit_status)
rev_neigh.insert(std::make_pair(host, ptr));
}
+ comp = 0.0;
+
prev_load_broadcast = -1; // force sending of load on first send()
expected_load = load;
total_load_running += load;
void process::compute()
{
if (load > 0.0) {
- double duration = opt::comp_cost(load);
- m_task_t task = MSG_task_create("computation", duration, 0.0, NULL);
- DEBUG2("compute %g flop%s", duration, ESSE(duration));
+ double flops = opt::comp_cost(load);
+ m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
+ DEBUG2("compute %g flop%s", flops, ESSE(flops));
MSG_task_execute(task);
+ comp += flops;
MSG_task_destroy(task);
} else {
DEBUG0("nothing to compute !");
process(int argc, char* argv[]);
virtual ~process();
+ double get_comp() const { return comp; }
double get_load() const { return load; }
int run();
private:
static double total_load_init; // sum of process loads at init
- static double total_load_running; // summ of loads while running
+ static double total_load_running; // sum of loads while running
static double total_load_exit; // sum of process loads at exit
typedef MAP_TEMPLATE<m_host_t, neighbor*> rev_neigh_type;
unsigned lb_iter; // counter of load-balancing iterations
unsigned comp_iter; // counter of computation iterations
+ double comp; // total computing done so far (flops)
+
double prev_load_broadcast; // used to ensure that we do not send
// a same information messages
double load; // current load