+
+\begin{Def}[Congruence modulo]
+Soit $a$ et $b$ deux entiers relatifs.
+On dit que $a$ est congru $b$ modulo $n$ si $n$ divise $a-b$, c'est-à-dire
+s'il existe $x \in \Z$ tel que $(a-b) = nx$.
+On note $a \equiv b [n]$.
+La relation \og $\equiv [n]$ \fg{}
+est une relation d'équivalence appelée congruence modulo $n$.
+\end{Def}
+
+\begin{Prop}
+Soit $a$, $b$, $c$, $d$, $x$ et $y$ dans $\Z$.
+Si $a \equiv c[n]$ et $b \equiv d[n]$, alors
+\begin{enumerate}
+\item $a +b \equiv c + d [n]$;
+\item $ab \equiv cd [n]$;
+\item $ax +by \equiv cx +dy [n]$.
+\end{enumerate}
+\end{Prop}
+
+\begin{Exo}
+Démontrer la proposition précédente.
+\end{Exo}
+
+\begin{Prop}
+Soit deux entiers naturels $a$ et $n$ tels que $a< n$.
+Si $a$ et $n$ sont premier entre eux,
+alors il existe un unique $x \in \{1, \dots, n-1\}$ tel
+que $ax \equiv 1[n]$.
+\end{Prop}
+
+\begin{Proof}
+\begin{itemize}
+\item[\textbf{Existence.}]
+Comme $a$ et $n$ sont premiers entre eux, d'après le théorème de Bézout,
+il exite $x$ et $y$ entiers tels que
+\end{itemize}
+\end{Proof}
+
+
+\begin{Exo}
+\begin{enumerate}
+\item Démonter que $35 \equiv 1 [11]$
+\item En déduire que pour tous entiers naturels $k$ et $r$ on a
+ $35k +r \equiv 3r [11]$.
+\item $n$ étant un entier naturel, quels sont les restes possibles
+ dans la division de $3^n$ par 11?
+\item Trouvez pour quelles valeurs de $n$, $3n + 7$ est divisible par 11
+\end{enumerate}
+\end{Exo}
+
+