]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
18115f550628fa69eb189a78f6b84641c955c865
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{amsmath}
10
11 \usepackage{url}
12 \DeclareUrlCommand\email{\urlstyle{same}}
13
14 \usepackage[autolanguage,np]{numprint}
15 \AtBeginDocument{%
16   \renewcommand*\npunitcommand[1]{\text{#1}}
17   \npthousandthpartsep{}}
18
19 \usepackage{xspace}
20 \usepackage[textsize=footnotesize]{todonotes}
21 \newcommand{\AG}[2][inline]{%
22   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
23 \newcommand{\JC}[2][inline]{%
24   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
27
28 \newcommand{\Dist}{\textit{Dist}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Fdiff}{\Xsub{F}{diff}}
34 \newcommand{\Fmax}{\Xsub{F}{max}}
35 \newcommand{\Fnew}{\Xsub{F}{new}}
36 \newcommand{\Ileak}{\Xsub{I}{leak}}
37 \newcommand{\Kdesign}{\Xsub{K}{design}}
38 \newcommand{\MaxDist}{\textit{Max Dist}}
39 \newcommand{\Ntrans}{\Xsub{N}{trans}}
40 \newcommand{\Pdyn}{\Xsub{P}{dyn}}
41 \newcommand{\PnormInv}{\Xsub{P}{NormInv}}
42 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
43 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
44 \newcommand{\Pstates}{\Xsub{P}{states}}
45 \newcommand{\Pstatic}{\Xsub{P}{static}}
46 \newcommand{\Sopt}{\Xsub{S}{opt}}
47 \newcommand{\Tcomp}{\Xsub{T}{comp}}
48 \newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
49 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
50 \newcommand{\Tmax}{\Xsub{T}{max}}
51 \newcommand{\Tnew}{\Xsub{T}{New}}
52 \newcommand{\Told}{\Xsub{T}{Old}}
53
54 \begin{document}
55
56 \title{Dynamic Frequency Scaling for Energy Consumption
57   Reduction in Synchronous Distributed Applications}
58
59 \author{%
60   \IEEEauthorblockN{%
61     Jean-Claude Charr,
62     Raphaël Couturier,
63     Ahmed Fanfakh and
64     Arnaud Giersch
65   }
66   \IEEEauthorblockA{%
67     FEMTO-ST Institute\\
68     University of Franche-Comté\\
69     IUT de Belfort-Montbéliard,
70     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
71     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
72     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
73     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
74    }
75   }
76
77 \maketitle
78
79 \begin{abstract}
80   Dynamic Voltage Frequency Scaling (DVFS) can be applied to modern CPUs.  This
81   technique is usually used to reduce the energy consumed by a CPU while
82   computing.  Thus, decreasing the frequency
83   reduces the power consumed by the CPU.  However, it can also significantly
84   affect the performance of the executed program if it is compute bound and if a
85   low CPU frequency is selected.  Therefore, the chosen scaling factor must
86   give the best possible trade-off between energy reduction and performance.
87
88   In this paper we present an algorithm that predicts the energy consumed with
89   each frequency gear and selects the one that gives the best ratio between
90   energy consumption reduction and performance.  This algorithm works online
91   without training or profiling and has a very small overhead.  It also takes
92   into account synchronous communications between the nodes that are executing
93   the distributed algorithm.  The algorithm has been evaluated over the SimGrid
94   simulator while being applied to the NAS parallel benchmark programs.  The
95   results of the experiments show that it outperforms other existing scaling
96   factor selection algorithms.
97 \end{abstract}
98
99 \section{Introduction}
100 \label{sec.intro}
101
102 The need and demand for more computing power have been increasing since the
103 birth of the first computing unit and it is not expected to slow down in the
104 coming years.  To satisfy this demand, researchers and supercomputers
105 constructors have been regularly increasing the number of computing cores and
106 processors in supercomputers (for example in November 2013, according to the
107 TOP500 list~\cite{43}, the Tianhe-2 was the fastest supercomputer.  It has more
108 than 3 million of cores and delivers more than \np[Tflop/s]{33} while consuming
109 \np[kW]{17808}).  This large increase in number of computing cores has led to
110 large energy consumption by these architectures.  Moreover, the price of energy
111 is expected to continue its ascent according to the demand.  For all these
112 reasons energy reduction has become an important topic in the high performance
113 computing field.  To tackle this problem, many researchers use DVFS (Dynamic
114 Voltage Frequency Scaling) operations which reduce dynamically the frequency and
115 voltage of cores and thus their energy consumption.  Indeed, modern CPUs offer a
116 set of acceptable frequencies which are usually called gears, and the user or
117 the operating system can modify the frequency of the processor according to its
118 needs.  However, DVFS also degrades the performance of computation.  Therefore
119 researchers try to reduce the frequency to the minimum when processors are idle
120 (waiting for data from other processors or communicating with other processors).
121 Moreover, depending on their objectives, they use heuristics to find the best
122 scaling factor during the computation.  If they aim for performance they choose
123 the best scaling factor that reduces the consumed energy while affecting as
124 little as possible the performance.  On the other hand, if they aim for energy
125 reduction, the chosen scaling factor must produce the most energy efficient
126 execution without considering the degradation of the performance.  It is
127 important to notice that lowering the frequency to the minimum value does not always
128 give the most energy efficient execution due to energy leakage.  The best
129 scaling factor might be chosen during execution (online) or during a
130 pre-execution phase.  In this paper, we present an algorithm that selects a
131 frequency scaling factor that simultaneously takes into consideration the energy
132 consumption by the CPU and the performance of the application.  The main
133 objective of HPC systems is to execute as fast as possible the application.
134 Therefore, our algorithm selects the scaling factor online with very small
135 overhead.  The proposed algorithm takes into account the communication times of
136 the MPI program to choose the scaling factor.  This algorithm has the ability to
137 predict both energy consumption and execution time over all available scaling
138 factors.  The prediction achieved depends on some computing time information,
139 gathered at the beginning of the runtime.  We apply this algorithm to the NAS parallel benchmarks (NPB v3.3)~\cite{44}.  Our experiments are executed using the simulator
140 SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183} over a homogeneous
141 distributed memory architecture.  Furthermore, we compare the proposed algorithm
142 with Rauber and Rünger methods~\cite{3}.  The comparison's results show that our
143 algorithm gives better energy-time trade-off.
144
145 This paper is organized as follows: Section~\ref{sec.relwork} presents some
146 related works from other authors.  Section~\ref{sec.exe}  presents an energy
147 model for homogeneous platforms.  Section~\ref{sec.mpip} describes how the
148 performance of MPI programs can be predicted.  Section~\ref{sec.compet} presents
149 the energy-performance objective function that maximizes the reduction of energy
150 consumption while minimizing the degradation of the program's performance.
151 Section~\ref{sec.optim} details the proposed energy-performance algorithm.
152 Section~\ref{sec.expe} verifies the accuracy of the performance prediction model
153 and presents the results of the proposed algorithm.  It also shows the
154 comparison results between our method and other existing methods.  Finally, we
155 conclude in Section~\ref{sec.concl} with a summary and some future works.
156
157 \section{Related works}
158 \label{sec.relwork}
159
160
161 In this section, some heuristics to compute the scaling factor are presented and
162 classified into two categories: offline and online methods.
163
164 \subsection{Offline scaling factor selection methods}
165
166 The offline scaling factor selection methods are executed before the runtime of
167 the program.  They return static scaling factor values to the processors
168 participating in the execution of the parallel program.  On the one hand, the
169 scaling factor values could be computed based on information retrieved by
170 analyzing the code of the program and the computing system that will execute it.
171 In~\cite{40}, Azevedo et al. detect during compilation the dependency points
172 between tasks in a multi-task program.  This information is then used to lower
173 the frequency of some processors in order to eliminate slack times.  A slack
174 time is the period of time during which a processor that has already finished
175 its computation, has to wait for a set of processors to finish their
176 computations and send their results to the waiting processor in order to
177 continue its task that is dependent on the results of computations being
178 executed on other processors.  Freeh et al. showed in~\cite{17} that the
179 communication times of MPI programs do not change when the frequency is scaled
180 down.  On the other hand, some offline scaling factor selection methods use the
181 information gathered from previous full or partial executions of the program. The whole program or, a 
182 part of it,  is usually executed over all the available frequency
183 gears and the execution time and the energy consumed with each frequency
184 gear are measured.  Then a heuristic or an exact method uses the retrieved
185 information to compute the values of the scaling factor for the processors.
186 In~\cite{8} , Rountree et al. use a linear programming algorithm, while in~\cite{34}, Cochran et
187 al. use a multi-logistic regression algorithm for the same goal.  The main
188 drawback of these methods is that they all require executing the
189 whole program or, a part of it, on all frequency gears for each new instance of the same program.
190
191 \subsection{Online scaling factor selection methods}
192
193 The online scaling factor selection methods are executed during the runtime of
194 the program.  They are usually integrated into iterative programs where the same
195 block of instructions is executed many times.  During the first few iterations,
196 a lot of information is measured such as the execution time, the energy consumed
197 using a multimeter, the slack times, \dots{} Then a method will exploit these
198 measurements to compute the scaling factor values for each processor.  This
199 operation, measurements and computing new scaling factor, can be repeated as
200 much as needed if the iterations are not regular. Peraza, Yu-Liang et
201 al.~\cite{2,31} used varied heuristics to select the appropriate scaling
202 factor values to eliminate the slack times during runtime.  However, as seen
203 in~\cite{19}, machine learning method takes a lot of time to converge
204 when the number of available gears is big.  To reduce the impact of slack times,
205 in~\cite{1}, Lim et al. developed an algorithm that detects the communication
206 sections and changes the frequency during these sections only.  This approach
207 might change the frequency of each processor many times per iteration if an
208 iteration contains more than one communication section.  In~\cite{3}, Rauber and
209 Rünger used an analytical model that can predict the consumed energy for every frequency gear after measuring the consumed energy. They
210 maintain the performance as mush as possible by setting the highest frequency gear to the slowest task. 
211
212 The primary contribution of 
213 our paper is to present a new online scaling factor selection method which has the
214  following characteristics:\\
215 1) It is based on Rauber and Rünger analytical model to predict the energy
216   consumption of the application with different frequency gears. 
217 2) It selects the frequency scaling factor for simultaneously optimizing
218   energy reduction and maintaining performance. 
219 3) It is well adapted to distributed architectures because it takes into
220   account the communication time. 
221 4) It is well adapted to distributed applications with imbalanced tasks.
222 5) It has a very small overhead when compared to other methods
223   (e.g.,~\cite{19}) and does not require profiling or training as
224   in~\cite{34}.
225
226
227 % \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
228 %   can be deleted if we need space, we can just say we are interested in this
229 %   paper in homogeneous clusters}
230
231
232 \section{Energy model for a homogeneous platform}
233 \label{sec.exe}
234 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
235 two power metrics: the static and the dynamic power.  While the first one is
236 consumed as long as the computing unit is on, the latter is only consumed during
237 computation times.  The dynamic power $\Pdyn$ is related to the switching
238 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
239 operational frequency $f$, as shown in EQ~\eqref{eq:pd}.
240 \begin{equation}
241   \label{eq:pd}
242   \Pdyn = \alpha \cdot C_L \cdot V^2 \cdot f
243 \end{equation}
244 The static power $\Pstatic$ captures the leakage power as follows:
245 \begin{equation}
246   \label{eq:ps}
247    \Pstatic  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
248 \end{equation}
249 where V is the supply voltage, $\Ntrans$ is the number of transistors,
250 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
251 technology-dependent parameter.  The energy consumed by an individual processor
252 to execute a given program can be computed as:
253 \begin{equation}
254   \label{eq:eind}
255    \Eind =  \Pdyn \cdot \Tcomp + \Pstatic \cdot T
256 \end{equation}
257 where $T$ is the execution time of the program, $\Tcomp$ is the computation
258 time and $\Tcomp \leq T$. $\Tcomp$ may be equal to $T$ if there is no
259 communication, no slack time and no synchronization.
260
261 DVFS is a process that is allowed in modern processors to reduce the dynamic
262 power by scaling down the voltage and frequency.  Its main objective is to
263 reduce the overall energy consumption~\cite{37}.  The operational frequency $f$
264 depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot f$ with some
265 constant $\beta$.  This equation is used to study the change of the dynamic
266 voltage with respect to various frequency values in~\cite{3}.  The reduction
267 process of the frequency can be expressed by the scaling factor $S$ which is the
268 ratio between the maximum and the new frequency as in EQ~\eqref{eq:s}.
269 \begin{equation}
270   \label{eq:s}
271   S = \frac{\Fmax}{\Fnew}
272 \end{equation}
273 The value of the scaling factor $S$ is greater than 1 when changing the
274 frequency of the CPU to any new frequency value~(\emph{P-state}) in the
275 governor. This factor reduces quadratically
276 the dynamic power which may cause degradation in performance and thus, the
277 increase of the static energy because the execution time is increased~\cite{36}.
278 If the tasks are sorted according to their execution times before scaling in a
279 descending order, the total energy consumption model for a parallel homogeneous
280 platform, as presented by Rauber and Rünger~\cite{3}, can be written as a
281 function of the scaling factor $S$, as in EQ~\eqref{eq:energy}.
282
283 \begin{equation}
284   \label{eq:energy}
285   E = \Pdyn \cdot S_1^{-2} \cdot
286     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
287       \Pstatic \cdot T_1 \cdot S_1 \cdot N
288 \end{equation}
289 where $N$ is the number of parallel nodes, $T_i$ for $i=1,\dots,N$ are
290 the execution times of the sorted tasks.  Therefore, $T_1$ is
291 the time of the slowest task, and $S_1$ its scaling factor which should be the
292 highest because they are proportional to the time values $T_i$.  The scaling
293 factors $S_i$ are computed as in EQ~\eqref{eq:si}.
294 \begin{equation}
295   \label{eq:si}
296   S_i = S \cdot \frac{T_1}{T_i}
297       = \frac{\Fmax}{\Fnew} \cdot \frac{T_1}{T_i}
298 \end{equation}
299 In this paper we use Rauber and Rünger's energy model, EQ~\eqref{eq:energy}, because it can be applied to homogeneous clusters if the communication time is taken in consideration. Moreover, we compare our algorithm with Rauber and Rünger's scaling factor selection
300 method which uses the same energy model.  In their method, the optimal scaling factor is
301 computed by minimizing the derivation of EQ~\eqref{eq:energy} which produces
302 EQ~\eqref{eq:sopt}.
303
304 \begin{equation}
305   \label{eq:sopt}
306   \Sopt = \sqrt[3]{\frac{2}{N} \cdot \frac{\Pdyn}{\Pstatic} \cdot
307     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
308 \end{equation}
309
310
311 \section{Performance evaluation of MPI programs}
312 \label{sec.mpip}
313
314 The execution time of a parallel synchronous iterative application is
315 equal to the execution time of the slowest task.  If there is no
316 communication and the application is not data bounded, the execution time of a
317 parallel program is linearly proportional to the operational frequency and any
318 DVFS operation for energy reduction increases the execution time of the parallel
319 program.  Therefore, the scaling factor $S$ is linearly proportional to the
320 execution time.  However, in most MPI applications the processes exchange
321 data.  During these communications the processors involved remain idle until the
322 communications are finished.  For that reason, any change in the frequency has no
323 impact on the time of communication~\cite{17}.  The communication time for a
324 task is the summation of periods of time that begin with an MPI call for sending
325 or receiving a message till the message is synchronously sent or received.  To
326 be able to predict the execution time of MPI program, the communication time and
327 the computation time for the slowest task must be measured before scaling.  These
328 times are used to predict the execution time for any MPI program as a function
329 of the new scaling factor as in EQ~\eqref{eq:tnew}.
330 \begin{equation}
331   \label{eq:tnew}
332   \Tnew = \TmaxCompOld \cdot S + \TmaxCommOld
333 \end{equation}
334 In this paper, this prediction method is used to select the best scaling factor
335 for each processor as presented in the next section.
336
337 \section{Performance and energy reduction trade-off}
338 \label{sec.compet}
339
340 This section presents our method for choosing the optimal scaling factor that
341 gives the best tradeoff between energy reduction and performance. This method
342 takes into account the execution times for both computation and communication to
343 compute the scaling factor.  Since the energy consumption and the performance
344 are not measured using the same metric, a normalized value of both measurements
345 can be used to compare them.  The normalized energy is the ratio between the
346 consumed energy with scaled frequency and the consumed energy without scaled
347 frequency:
348 \begin{multline}
349   \label{eq:enorm}
350   \Enorm = \frac{ \Ereduced}{\Eoriginal} \\
351       {} = \frac{\Pdyn \cdot S_1^{-2} \cdot
352              \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
353                \Pstatic \cdot T_1 \cdot S_1 \cdot N}{
354              \Pdyn \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
355                \Pstatic \cdot T_1 \cdot N }
356 \end{multline}
357 In the same way, the normalized execution time of a program is computed as follows:
358 \begin{equation}
359   \label{eq:pnorm}
360   \Tnorm = \frac{\Tnew}{\Told}
361          = \frac{\TmaxCompOld \cdot S + \TmaxCommOld}{
362              \TmaxCompOld + \TmaxCommOld}
363 \end{equation}
364 The relation between the execution time and the consumed energy of a program is nonlinear and complex. In consequences,  the relation between the consumed energy and the scaling factor is also nonlinear, for more details refer to~\cite{17}. Therefore, the resulting normalized energy consumption curve and execution time curve, for different scaling factors, do not have the same direction see Figure~\ref{fig:rel}\subref{fig:r2}.  To tackle this problem and optimize both terms,  we inverse the equation of the normalized execution time as follows:
365 \begin{equation}
366   \label{eq:pnorm_en}
367   \Pnorm = \frac{ \Told}{ \Tnew}
368                = \frac{\TmaxCompOld +
369                  \TmaxCommOld}{\TmaxCompOld \cdot S +
370                  \TmaxCommOld}
371 \end{equation}
372 \begin{figure}
373   \centering
374   \subfloat[Real relation.]{%
375     \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}}%
376   \subfloat[Converted relation.]{%
377     \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}
378   \caption{The energy and performance relation}
379   \label{fig:rel}
380 \end{figure}
381 Then, we can model our objective function as finding the maximum distance
382 between the energy curve EQ~\eqref{eq:enorm} and the inverse of the execution time (performance)
383 curve EQ~\eqref{eq:pnorm_en} over all available scaling factors.  This
384 represents the minimum energy consumption with minimum execution time (better
385 performance) at the same time, see Figure~\ref{fig:rel}\subref{fig:r1}.  Then
386 our objective function has the following form:
387 \begin{equation}
388   \label{eq:max}
389   \MaxDist = \max_{j=1,2,\dots,F}
390       (\overbrace{\Pnorm(S_j)}^{\text{Maximize}} -
391        \overbrace{\Enorm(S_j)}^{\text{Minimize}} )
392 \end{equation}
393 where $F$ is the number of available frequencies. Then we can select the optimal
394 scaling factor that satisfies EQ~\eqref{eq:max}.  Our objective function can
395 work with any energy model or static power values stored in a data file.
396 Moreover, this function works in optimal way when the energy curve has a convex
397 form over the available frequency scaling factors as shown in~\cite{15,3,19}.
398
399 \section{Optimal scaling factor for performance and energy}
400 \label{sec.optim}
401
402 Algorithm on Figure~\ref{EPSA} computes the optimal scaling factor according to
403 the objective function described above.
404 \begin{figure}[tp]
405   \begin{algorithmic}[1]
406     % \footnotesize
407     \Require ~
408     \begin{description}
409     \item[$\Pstatic$] static power value
410     \item[$\Pdyn$] dynamic power value
411     \item[$\Pstates$] number of available frequencies
412     \item[$\Fmax$] maximum frequency
413     \item[$\Fdiff$] difference between two successive freq.
414     \end{description}
415     \Ensure $\Sopt$ is the optimal scaling factor
416
417     \State $\Sopt \gets 1$
418     \State $\Dist \gets 0$
419     \State $\Fnew \gets \Fmax$
420     \For {$j = 2$ to $\Pstates$}
421       \State $\Fnew \gets \Fnew - \Fdiff$
422       \State $S \gets \Fmax / \Fnew$
423       \State $S_i \gets S \cdot \frac{T_1}{T_i}
424                   = \frac{\Fmax}{\Fnew} \cdot \frac{T_1}{T_i}$
425              for $i=1,\dots,N$
426       \State $\Enorm \gets
427           \frac{\Pdyn \cdot S_1^{-2} \cdot
428                   \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
429                   \Pstatic \cdot T_1 \cdot S_1 \cdot N }{
430                 \Pdyn \cdot
431                   \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
432                   \Pstatic \cdot T_1 \cdot N }$
433       \State $\Pnorm \gets \Told / \Tnew$
434       \If{$(\Pnorm - \Enorm > \Dist)$}
435         \State $\Sopt \gets S$
436         \State $\Dist \gets \Pnorm - \Enorm$
437       \EndIf
438     \EndFor
439     \State  Return $\Sopt$
440   \end{algorithmic}
441   \caption{Scaling factor selection algorithm}
442   \label{EPSA}
443 \end{figure}
444
445 The proposed algorithm works online during the execution time of the MPI
446 program.  It selects the optimal scaling factor after gathering the computation
447 and communication times from the program after one iteration.  Then the program
448 changes the new frequencies of the CPUs according to the computed scaling
449 factors. In our experiments over a homogeneous cluster described in
450 Section~\ref{sec.expe}, this algorithm has a small execution time. It takes
451 \np[$\mu$s]{1.52} on average for 4 nodes and \np[$\mu$s]{6.65} on average for 32
452 nodes.  The algorithm complexity is $O(F\cdot N)$, where $F$ is the number of
453 available frequencies and $N$ is the number of computing nodes.  The algorithm
454 is called just once during the execution of the program.  The DVFS algorithm on
455 Figure~\ref{dvfs} shows where and when the algorithm is called in the MPI
456 program.
457 %\begin{table}[htb]
458 %  \caption{Platform file parameters}
459 %  % title of Table
460 %  \centering
461 %  \begin{tabular}{|*{7}{l|}}
462 %    \hline
463 %    Max      & Min      & Backbone        & Backbone         & Link         & Link            & Sharing \\
464 %    Freq.    & Freq.    & Bandwidth       & Latency          & Bandwidth    & Latency         & Policy  \\
465 %    \hline
466 %    \np{2.5} & \np{800} & \np[GBps]{2.25} & \np[$\mu$s]{0.5} & \np[GBps]{1} & \np[$\mu$s]{50} & Full    \\
467 %    GHz      & MHz      &                 &                  &              &                 & Duplex  \\
468 %    \hline
469 %  \end{tabular}
470 %  \label{table:platform}
471 %\end{table}
472
473 \begin{figure}[tp]
474   \begin{algorithmic}[1]
475     % \footnotesize
476     \For {$k=1$ to \textit{some iterations}}
477       \State Computations section.
478       \State Communications section.
479       \If {$(k=1)$}
480         \State Gather all times of computation and\newline\hspace*{3em}%
481                communication from each node.
482         \State Call algorithm from Figure~\ref{EPSA} with these times.
483         \State Compute the new frequency from the\newline\hspace*{3em}%
484               returned optimal scaling factor.
485         \State Set the new frequency to the CPU.
486       \EndIf
487     \EndFor
488   \end{algorithmic}
489   \caption{DVFS algorithm}
490   \label{dvfs}
491 \end{figure}
492 After obtaining the optimal scaling factor, the program calculates the new
493 frequency $F_i$ for each task proportionally to its time value $T_i$.  By
494 substitution of EQ~\eqref{eq:s} in EQ~\eqref{eq:si}, we can calculate the new
495 frequency $F_i$ as follows:
496 \begin{equation}
497   \label{eq:fi}
498   F_i = \frac{\Fmax \cdot T_i}{\Sopt \cdot \Tmax}
499 \end{equation}
500 According to this equation all the nodes may have the same frequency value if
501 they have balanced workloads, otherwise, they take different frequencies when
502 having imbalanced workloads.  Thus, EQ~\eqref{eq:fi} adapts the frequency of the
503 CPU to the nodes' workloads to maintain the performance of the program.
504
505 \section{Experimental results}
506 \label{sec.expe}
507 Our experiments are executed on the simulator SimGrid/SMPI v3.10.  We configure
508 the simulator to use a homogeneous cluster with one core per node.  
509 %The detailed characteristics of our platform file are shown in Table~\ref{table:platform}.
510 Each node in the cluster has 18 frequency values
511 from \np[GHz]{2.5} to \np[MHz]{800} with \np[MHz]{100} difference between each
512 two successive frequencies. The nodes are connected via an ethernet network with 1Gbit/s  bandwidth. 
513
514 \subsection{Execution time prediction verification}
515
516 In this section we evaluate the precision of our execution time prediction method
517 based on EQ~\eqref{eq:tnew} by applying it to the NAS benchmarks.  The NAS programs
518 are executed with the class B option to compare the real execution time with
519 the predicted execution time.  Each program runs offline with all available
520 scaling factors on 8 or 9 nodes (depending on the benchmark) to produce real
521 execution time values.  These scaling factors are computed by dividing the
522 maximum frequency by the new one see EQ~\eqref{eq:s}.
523 \begin{figure}
524   \centering
525   \includegraphics[width=.5\linewidth]{fig/cg_per}\hfill%
526  % \includegraphics[width=.5\linewidth]{fig/mg_pre}\hfill%
527  % \includegraphics[width=.5\linewidth]{fig/bt_pre}\qquad%
528    \includegraphics[width=.5\linewidth]{fig/lu_pre}\hfill%
529   \caption{Comparing predicted to real execution times}
530   \label{fig:pred}
531 \end{figure}
532 %see Figure~\ref{fig:pred}
533 In our cluster there are 18 available frequency states for each processor.  This
534 leads to 18 run states for each program.  We use seven MPI programs of the NAS
535 parallel benchmarks: CG, MG, EP, FT, BT, LU and SP.  Figure~\ref{fig:pred}
536 presents plots of the real execution times and the simulated ones. The maximum
537 normalized error between these two execution times varies between \np{0.0073} to
538 \np{0.031} dependent on the executed benchmark.  The smallest prediction error
539 was for CG and the worst one was for LU.
540
541 \subsection{The experimental results for the scaling algorithm }
542 The proposed algorithm was applied to seven MPI programs of the NAS benchmarks
543 (EP, CG, MG, FT, BT, LU and SP) which were run with three classes (A, B and C).
544 For each instance the benchmarks were executed on a number of processors
545 proportional to the size of the class.  Each class represents the problem size
546 ascending from class A to C.  Additionally, depending on some speed up points
547 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
548 respectively.  Depending on EQ~\eqref{eq:energy}, we measure the energy
549 consumption for all the NAS MPI programs while assuming that the dynamic power
550 with the highest frequency is equal to \np[W]{20} and the power static is equal
551 to \np[W]{4} for all experiments.  These power values were also used by Rauber
552 and Rünger in~\cite{3}.  The results showed that the algorithm selected
553 different scaling factors for each program depending on the communication
554 features of the program as in the plots from Figure~\ref{fig:nas}.  These plots
555 illustrate that there are different distances between the normalized energy and
556 the normalized inverted execution time curves, because there are different
557 communication features for each benchmark.  When there are little or no
558 communications, the inverted execution time curve is very close to the energy
559 curve.  Then the distance between the two curves is very small.  This leads to
560 small energy savings.  The opposite happens when there are a lot of
561 communication, the distance between the two curves is big.  This leads to more
562 energy savings (e.g. CG and FT), see Table~\ref{table:compareC}.  All discovered
563 frequency scaling factors optimize both the energy and the execution time
564 simultaneously for all NAS benchmarks.  In Table~\ref{table:compareC}, we record
565 all optimal scaling factors results for each benchmark running class C.  These
566 scaling factors give the maximum energy saving percentage and the minimum
567 performance degradation percentage at the same time from all available scaling
568 factors.
569 \begin{figure*}[t]
570   \centering
571   \includegraphics[width=.33\linewidth]{fig/ep}\hfill%
572   \includegraphics[width=.33\linewidth]{fig/cg}\hfill%
573  % \includegraphics[width=.328\linewidth]{fig/sp}
574  %  \includegraphics[width=.328\linewidth]{fig/lu}\hfill%
575   \includegraphics[width=.33\linewidth]{fig/bt}
576  % \includegraphics[width=.328\linewidth]{fig/ft}
577   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
578   \label{fig:nas}
579 \end{figure*}
580
581 As shown in Table~\ref{table:compareC}, when the optimal scaling factor has a
582 big value we can gain more energy savings as in CG and FT benchmarks.  The
583 opposite happens when the optimal scaling factor has a small value as in BT and
584 EP benchmarks.  Our algorithm selects a big scaling factor value when the
585 communication and the other slacks times are big and smaller ones in opposite
586 cases.  In EP there are no communication inside the iterations.  This leads our
587 algorithm to select smaller scaling factor values (inducing smaller energy
588 savings).
589
590 \subsection{Results comparison}
591
592 In this section, we compare our scaling factor selection method with Rauber and
593 Rünger methods~\cite{3}.  They had two scenarios, the first is to reduce energy
594 to the optimal level without considering the execution time as in
595 EQ~\eqref{eq:sopt}.  We refer to this scenario as $R_{E}$.  The second scenario
596 is similar to the first except setting the slower task to the maximum frequency
597 (when the scale $S=1$) to keep the performance from degradation as mush as
598 possible.  We refer to this scenario as $R_{E-P}$.  While we refer to our
599 algorithm as EPSA (Energy to Performance Scaling Algorithm).  The comparison is
600 made in Table~\ref{table:compareC}.  This table shows the results of our method and
601 Rauber and Rünger scenarios for all the NAS benchmarks programs for class C.
602
603 \begin{table}
604   \caption{Comparing results for the NAS class C}
605   % title of Table
606   \centering
607   \begin{tabular}{|l|l|*{4}{r|}}
608     \hline
609     Method    & Program & Factor & Energy    & Performance    & Energy-Perf. \\
610     Name      & Name    & Value  & Saving \% & Degradation  \% & Distance     \\
611     \hline
612     % \rowcolor[gray]{0.85}
613     $EPSA$    & CG      & 1.56   & 39.23     & 14.88          &  24.35 \\ \hline
614     $R_{E-P}$ & CG      & 2.15   & 45.36     & 25.89          &  19.47 \\ \hline
615     $R_{E}$   & CG      & 2.15   & 45.36     & 26.70          &  18.66 \\ \hline
616
617     $EPSA$    & MG      & 1.47   & 34.97     & 21.69          &  13.27 \\ \hline
618     $R_{E-P}$ & MG      & 2.15   & 43.65     & 40.45          &   3.20 \\ \hline
619     $R_{E}$   & MG      & 2.15   & 43.64     & 41.38          &   2.26 \\ \hline
620
621     $EPSA$    & EP      & 1.04   & 22.14     & 20.73          &   1.41 \\ \hline
622     $R_{E-P}$ & EP      & 1.92   & 39.40     & 56.33          & -16.93 \\ \hline
623     $R_{E}$   & EP      & 1.92   & 38.10     & 56.35          & -18.25 \\ \hline
624
625     $EPSA$    & LU      & 1.38   & 35.83     & 22.49          &  13.34 \\ \hline
626     $R_{E-P}$ & LU      & 2.15   & 44.97     & 41.00          &   3.97 \\ \hline
627     $R_{E}$   & LU      & 2.15   & 44.97     & 41.80          &   3.17 \\ \hline
628
629     $EPSA$    & BT      & 1.31   & 29.60     & 21.28          &   8.32 \\ \hline
630     $R_{E-P}$ & BT      & 2.13   & 45.60     & 49.84          &  -4.24 \\ \hline
631     $R_{E}$   & BT      & 2.13   & 44.90     & 55.16          & -10.26 \\ \hline
632
633     $EPSA$    & SP      & 1.38   & 33.48     & 21.35          &  12.12 \\ \hline
634     $R_{E-P}$ & SP      & 2.10   & 45.69     & 43.60          &   2.09 \\ \hline
635     $R_{E}$   & SP      & 2.10   & 45.75     & 44.10          &   1.65 \\ \hline
636
637     $EPSA$    & FT      & 1.47   & 34.72     & 19.00          &  15.72 \\ \hline
638     $R_{E-P}$ & FT      & 2.04   & 39.40     & 37.10          &   2.30 \\ \hline
639     $R_{E}$   & FT      & 2.04   & 39.35     & 37.70          &   1.65 \\ \hline
640   \end{tabular}
641   \label{table:compareC}
642   % is used to refer this table in the text
643 \end{table}
644 As shown in Table~\ref{table:compareC}, the ($R_{E-P}$) method outperforms the ($R_{E}$)
645 method in terms of performance and energy reduction.  The ($R_{E-P}$) method
646 also gives better energy savings than our method.  However, although our scaling
647 factor is not optimal for energy reduction, the results in this table prove
648 that our algorithm returns the best scaling factor that satisfy our objective
649 method: the largest distance between energy reduction and performance
650 degradation. Figure~\ref{fig:compare}  illustrates even better the distance between 
651 the energy reduction and performance degradation. The negative values mean that one of
652 the two objectives (energy or performance) have been degraded more than the
653 other.  The positive trade-offs with the highest values lead to maximum energy
654 savings while keeping the performance degradation as low as possible.  Our
655 algorithm always gives the highest positive energy to performance trade-offs
656 while Rauber and Rünger's method, ($R_{E-P}$), gives sometimes negative
657 trade-offs such as in BT and EP.
658 \begin{figure}[t]
659   \centering
660 %  \includegraphics[width=.328\linewidth]{fig/compare_class_A}
661 %  \includegraphics[width=.328\linewidth]{fig/compare_class_B}
662   \includegraphics[width=\linewidth]{fig/compare_class_C}
663   \caption{Comparing our method to Rauber and Rünger's methods}
664   \label{fig:compare}
665 \end{figure}
666
667 \section{Conclusion}
668 \label{sec.concl}
669
670 In this paper, we have presented a new online scaling factor selection method
671 that optimizes simultaneously the energy and performance of a distributed
672 application running on a homogeneous cluster.  It uses the computation and
673 communication times measured at the first iteration to predict energy
674 consumption and the execution time of the parallel application at every available
675 frequency.  Then, it selects the scaling factor that gives the best trade-off
676 between energy reduction and performance which is the maximum distance between
677 the energy and the inverted execution time curves.  To evaluate this method, we
678 have applied it to the NAS benchmarks and it was compared to Rauber and Rünger
679 methods while being executed on the simulator SimGrid.  The results showed that
680 our method, outperforms Rauber and Rünger's methods in terms of energy-performance
681 ratio. 
682
683 In the near future, we would like to adapt this scaling factor selection method
684 to heterogeneous platforms where each node has different characteristics.  In
685 particular, each CPU has different available frequencies, energy consumption and
686 performance.  It would be also interesting to develop a new energy model for
687 asynchronous parallel iterative methods where the number of iterations is not
688 known in advance and depends on the global convergence of the iterative system.
689
690 \section*{Acknowledgment}
691
692 This work has been partially supported by the Labex ACTION project (contract
693 ``ANR-11-LABX-01-01'').  Computations have been performed on the supercomputer
694 facilities of the Mésocentre de calcul de Franche-Comté.  As a PhD student,
695 Mr. Ahmed Fanfakh, would like to thank the University of Babylon (Iraq) for
696 supporting his work.
697
698 % trigger a \newpage just before the given reference
699 % number - used to balance the columns on the last page
700 % adjust value as needed - may need to be readjusted if
701 % the document is modified later
702 %\IEEEtriggeratref{15}
703
704 \bibliographystyle{IEEEtran}
705 \bibliography{IEEEabrv,my_reference}
706 \end{document}
707
708 %%% Local Variables:
709 %%% mode: latex
710 %%% TeX-master: t
711 %%% fill-column: 80
712 %%% ispell-local-dictionary: "american"
713 %%% End:
714
715 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
716 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex