]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
1ce9ae117070ebe5f851f0dbc9e1c4876637bdf6
[mpi-energy.git] / paper.tex
1 \documentclass[12pt]{article}
2 %\documentclass[12pt,twocolumn]{article}
3
4 \usepackage[T1]{fontenc}
5 \usepackage[utf8]{inputenc}
6 \usepackage[english]{babel}
7 \usepackage{algorithm,algorithmicx,algpseudocode}
8 \usepackage{graphicx,graphics}
9 \usepackage{subfig}
10 \usepackage{listings}
11 \usepackage{colortbl}
12 \usepackage{amsmath}
13 % \usepackage{sectsty}
14 % \usepackage{titlesec}
15 % \usepackage{secdot}
16 %\usepackage[font={footnotesize,bt}]{caption}
17 %\usepackage[font=scriptsize,labelfont=bf]{caption}
18 \usepackage{lmodern}
19
20 \usepackage{todonotes}
21 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\small\textbf{AG:} #2}}
22
23 \begin{document}
24
25 \title{Optimal Dynamic Frequency Scaling for Energy-Performance of Parallel MPI Programs}
26 \author{A. Badri \and J.-C. Charr \and R. Couturier \and A. Giersch}
27 \maketitle
28
29 \AG{``Optimal'' is a bit pretentious in the title}
30
31 \begin{abstract}
32   \AG{FIXME}
33 \end{abstract}
34
35 \section{Introduction}
36
37 bla bla bla
38
39
40 The need for computing power is still increasing and it is not expected to slow
41 down in the coming years. To satisfy this demand, researchers and supercomputers
42 constructors have been regularly increasing the number of computing cores in
43 supercomputers (for example in November 2013, according to the top 500
44 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
45 millions of cores and delivers more than 33 Tflop/s while consuming 17808
46 kW). This large increase in number of computing cores has led to large energy
47 consumption by these architectures. Moreover, the price of energy is expected to
48 continue its ascent according to the demand. For all these reasons energy
49 reduction became an important topic in the high performance computing field. To
50 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
51 Scaling) operations which reduce dynamically the frequency and voltage of cores
52 and thus their energy consumption. However, this operation also degrades the
53 performance of computation. Therefore researchers try to reduce the frequency to
54 minimum when processors are idle (waiting for data from other processors or
55 communicating with other processors). Moreover, depending on their objectives
56 they use heuristics to find the best scaling factor during the computation. If
57 they aim for performance they choose the best scaling factor that reduces the
58 consumed energy while affecting as little as possible the performance. On the
59 other hand, if they aim for energy reduction, the chosen scaling factor must
60 produce the most energy efficient execution without considering the degradation
61 of the performance. It is important to notice that lowering the frequency to
62 minimum value does not always give the most efficient execution due to energy
63 leakage. The best scaling factor might be chosen during execution (online) or
64 during a pre-execution phase.  In this paper we emphasize to develop an
65 algorithm that selects the optimal frequency scaling factor that takes into
66 consideration simultaneously the energy consumption and the performance. The
67 main objective of HPC systems is to run the application with less execution
68 time. Therefore, our algorithm selects the optimal scaling factor online with
69 very small footprint. The proposed algorithm takes into account the
70 communication times of the MPI programs to choose the scaling factor. This
71 algorithm has ability to predict both energy consumption and execution time over
72 all available scaling factors.  The prediction achieved depends on some
73 computing time information, gathered at the beginning of the runtime.  We apply
74 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
75 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
76 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
77 over an homogeneous distributed memory architecture. Furthermore, we compare the
78 proposed algorithm with Rauber's methods. The comparison's results show that our
79 algorithm gives better energy-time trade off.
80
81 \section{Related Works}
82
83 In the this section some heuristics, to compute the scaling factor, are
84 presented and classified in two parts : offline and online methods.
85
86 \subsection{The offline DVFS orientations}
87
88 The DVFS offline methods are static and are not executed during the runtime of
89 the program. Some approaches used heuristics to select the best DVFS state
90 during the compilation phases as an example in Azevedo et al.~\cite{40}. He used
91 intra-task algorithm to choose the DVFS setting when there are dependency points
92 between tasks. While in~\cite{29}, Xie et al. used breadth-first search
93 algorithm to do that. Their goal is saving energy with time limits. Another
94 approaches gathers and stores the runtime information for each DVFS state, then
95 used their methods offline to select the suitable DVFS that optimize energy-time
96 trade offs. As an example~\cite{8}, Rountree et al. used liner programming
97 algorithm, while in~\cite{38,34}, Cochran et al. used multi logistic regression
98 algorithm for the same goal. The offline study that shown the DVFS impact on the
99 communication time of the MPI program is~\cite{17}, Freeh et al. show that these
100 times not changed when the frequency is scaled down.
101
102 \subsection{The online DVFS orientations}
103
104 The objective of these works is to dynamically compute and set the frequency of
105 the CPU during the runtime of the program for saving energy. Estimating and
106 predicting approaches for the energy-time trade offs developed by
107 ~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
108 times. These times happen when the processors have to wait for data from other
109 processors to compute their task. For example, during the synchronous
110 communication time that take place in the MPI programs, the processors are
111 idle. The optimal DVFS can be selected using the learning methods. Therefore, in
112 ~\cite{39,19} used machine learning to converge to the suitable DVFS
113 configuration. Their learning algorithms have big time to converge when the
114 number of available frequencies is high. Also, the communication time of the MPI
115 program used online for saving energy as in~\cite{1}, Lim et al. developed an
116 algorithm that detects the communication sections and changes the frequency
117 during these sections only. This approach changes the frequency many times
118 because an iteration may contain more than one communication section. The domain
119 of analytical modeling used for choosing the optimal frequency as in~\cite{3},
120 Rauber et al. developed an analytical mathematical model for determining the
121 optimal frequency scaling factor for any number of concurrent tasks, without
122 considering communication times. They set the slowest task to maximum frequency
123 for maintaining performance.  In this paper we compare our algorithm with
124 Rauber's model~\cite{3}, because his model can be used for any number of
125 concurrent tasks for homogeneous platform and this is the same direction of this
126 paper.  However, the primary contributions of this paper are:
127 \begin{enumerate}
128 \item Selecting the optimal frequency scaling factor for energy and performance
129   simultaneously. While taking into account the communication time.
130 \item Adapting our scale factor to taking into account the imbalanced tasks.
131 \item The execution time of our algorithm is very small when compared to other
132   methods (e.g.,~\cite{19}).
133 \item The proposed algorithm works online without profiling or training as
134   in~\cite{38,34}.
135 \end{enumerate}
136
137 \section{Parallel Tasks Execution on Homogeneous Platform}
138
139 A homogeneous cluster consists of identical nodes in terms of the hardware and
140 the software. Each node has its own memory and at least one processor which can
141 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
142 executed on this model can be either synchronous or asynchronous. In this paper
143 we consider execution of the synchronous tasks on distributed homogeneous
144 platform. These tasks can exchange the data via synchronous memory passing.
145 \begin{figure}[h]
146   \centering
147   \subfloat[Synch. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
148   \subfloat[Synch. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
149   \caption{Parallel Tasks on Homogeneous Platform}
150   \label{fig:homo}
151 \end{figure}
152 Therefore, the execution time of a task consists of the computation time and the
153 communication time. Moreover, the synchronous communications between tasks can
154 lead to idle time while tasks wait at the synchronous point for others tasks to
155 finish their communications see figure~(\ref{fig:h1}).  Another source for idle
156 times is the imbalanced computations. This happen when processing different
157 amounts of data on each processor as an example see figure~(\ref{fig:h2}). In
158 this case the fastest tasks have to wait at the synchronous barrier for the
159 slowest tasks to finish their job. In both two cases the overall execution time
160 of the program is the execution time of the slowest task as :
161 \begin{equation}
162   \label{eq:T1}
163   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
164 \end{equation}
165 where $T_i$ is the execution time of process $i$.
166
167 \section{Energy Model for Homogeneous Platform}
168
169 The energy consumption by the processor consists of two powers metric: the
170 dynamic and the static power. This general power formulation is used by many
171 researchers see~\cite{9,3,15,26}. The dynamic power of the CMOS processors
172 $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
173 the supply voltage $V$ and operational frequency $f$ respectively as follow :
174 \begin{equation}
175   \label{eq:pd}
176   P_{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
177 \end{equation}
178 The static power $P_{static}$ captures the leakage power consumption as well as
179 the power consumption of peripheral devices like the I/O subsystem.
180 \begin{equation}
181   \label{eq:ps}
182   P_{static}  = V \cdot N \cdot K_{design} \cdot I_{leak}
183 \end{equation}
184 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
185 design dependent parameter and $I_{leak}$ is a technology-dependent
186 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
187 of the dynamic and the static power multiply by the execution time for example
188 see~\cite{36,15} .
189 \begin{equation}
190   \label{eq:eind}
191   E_{ind} = ( P_{dyn} + P_{static} ) \cdot T
192 \end{equation}
193 The dynamic voltage and frequency scaling (DVFS) is a process that allowed in
194 modern processors to reduce the dynamic power by scaling down the voltage and
195 frequency. Its main objective is to reduce the overall energy
196 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
197 supply voltage $V$, i.e., $V = \beta . f$ with some constant $\beta$. This
198 equation is used to study the change of the dynamic voltage with respect to
199 various frequency values in~\cite{3}. The reduction process of the frequency are
200 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
201 maximum and the new frequency as in EQ~(\ref{eq:s}).
202 \begin{equation}
203   \label{eq:s}
204   S = \frac{F_{max}}{F_{new}}
205 \end{equation}
206 The value of the scale \emph S is grater than 1 when changing the frequency to
207 any new frequency value(\emph {P-state}) in governor. It is equal to 1 when the
208 frequency are set to the maximum frequency.  The energy consumption model for
209 parallel homogeneous platform is depending on the scaling factor \emph S. This
210 factor reduces quadratically the dynamic power.  Also, this factor increases the
211 static energy linearly because the execution time is increased~\cite{36}.  The
212 energy model, depending on the frequency scaling factor, of homogeneous platform
213 for any number of concurrent tasks develops by Rauber~\cite{3}. This model
214 consider the two powers metric for measuring the energy of the parallel tasks as
215 in EQ~(\ref{eq:energy}).
216
217 \begin{equation}
218   \label{eq:energy}
219   E = P_{dyn} \cdot S_1^{-2} \cdot
220     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
221     P_{static} \cdot T_1 \cdot S_1 \cdot N
222  \hfill
223 \end{equation}
224 Where \emph N is the number of parallel nodes, $T_1 $ is the time of the slower
225 task, $T_i$ is the time of the task $i$ and $S_1$ is the maximum scaling factor
226 for the slower task. The scaling factor $S_1$, as in EQ~(\ref{eq:s1}), selects
227 from the set of scales values $S_i$. Each of these scales are proportional to
228 the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
229 \begin{equation}
230   \label{eq:s1}
231   S_1 = \max_{i=1,2,\dots,F} S_i
232 \end{equation}
233 \begin{equation}
234   \label{eq:si}
235   S_i = S \cdot \frac{T_1}{T_i}
236       = \frac{F_{max}}{F_{new}} \cdot \frac{T_1}{T_i}
237 \end{equation}
238 Where $F$ is the number of available frequencies. In this paper we depend on
239 Rauber's energy model EQ~(\ref{eq:energy}) for two reasons : 1-this model used
240 for homogeneous platform that we work on in this paper. 2-we are compare our
241 algorithm with Rauber's scaling model.  Rauber's optimal scaling factor for
242 optimal energy reduction derived from the EQ~(\ref{eq:energy}). He takes the
243 derivation for this equation (to be minimized) and set it to zero to produce the
244 scaling factor as in EQ~(\ref{eq:sopt}).
245 \begin{equation}
246   \label{eq:sopt}
247   S_{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_{dyn}}{P_{static}} \cdot
248     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
249 \end{equation}
250
251 \section{Performance Evaluation of MPI Programs}
252
253 The performance (execution time) of the parallel MPI applications are depends on
254 the time of the slowest task as in figure~(\ref{fig:homo}). Normally the
255 execution time of the parallel programs are proportional to the operational
256 frequency. Therefore, any DVFS operation for the energy reduction increase the
257 execution time of the parallel program. As shown in EQ~(\ref{eq:energy}) the
258 energy affected by the scaling factor $S$. This factor also has a great impact
259 on the performance. When scaling down the frequency to the new value according
260 to EQ~(\ref{eq:s}) lead to the value of the scale $S$ has inverse relation with
261 new frequency value ($S \propto \frac{1}{F_{new}}$). Also when decrease the
262 frequency value, the execution time increase. Then the new frequency value has
263 inverse relation with time ($F_{new} \propto \frac{1}{T}$). This lead to the
264 frequency scaling factor $S$ proportional linearly with execution time ($S
265 \propto T$). Large scale MPI applications such as NAS benchmarks have
266 considerable amount of communications embedded in these programs. During the
267 communication process the processor remain idle until the communication has
268 finished. For that reason any change in the frequency has no impact on the time
269 of communication but it has obvious impact on the time of
270 computation~\cite{17}. We are made many tests on real cluster to prove that the
271 frequency scaling factor \emph S has a linear relation with computation time
272 only also see~\cite{41}. To predict the execution time of MPI program, firstly
273 must be precisely specifying communication time and the computation time for the
274 slower task. Secondly, we use these times for predicting the execution time for
275 any MPI program as a function of the new scaling factor as in the
276 EQ~(\ref{eq:tnew}).
277 \begin{equation}
278   \label{eq:tnew}
279   T_{new} = T_{\textit{Max Comp Old}} \cdot S + T_{\textit{Max Comm Old}}
280 \end{equation}
281 The above equation shows that the scaling factor \emph S has linear relation
282 with the computation time without affecting the communication time. The
283 communication time consists of the beginning times which an MPI calls for
284 sending or receiving till the message is synchronously sent or received. In this
285 paper we predict the execution time of the program for any new scaling factor
286 value. Depending on this prediction we can produce our energy-performance scaling
287 method as we will show in the coming sections. In the next section we make an
288 investigation study for the EQ~(\ref{eq:tnew}).
289
290 \section{Performance Prediction Verification}
291
292 In this section we evaluate the precision of our performance prediction methods
293 on the NAS benchmark. We use the EQ~(\ref{eq:tnew}) that predicts the execution
294 time for any scale value. The NAS programs run the class B for comparing the
295 real execution time with the predicted execution time. Each program runs offline
296 with all available scaling factors on 8 or 9 nodes to produce real execution
297 time values. These scaling factors are computed by dividing the maximum
298 frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
299 SimGrid/SMPI v3.10 to run the NAS programs.
300 \AG{Fig.~\ref{fig:pred} is hard to read when printed in black and white,
301   especially the ``Normalize Real Perf.'' curve.}
302 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
303   \centering
304   \includegraphics[scale=0.60]{cg_per.eps}
305   \includegraphics[scale=0.60]{mg_pre.eps}
306   \includegraphics[scale=0.60]{bt_pre.eps}
307   \includegraphics[scale=0.60]{lu_pre.eps}
308   \caption{Fitting Predicted to Real Execution Time}
309   \label{fig:pred}
310 \end{figure}
311 %see Figure~\ref{fig:pred}
312 In our cluster there are 18 available frequency states for each processor from
313 2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
314 frequencies. For more details on the characteristics of the platform refer to
315 table~(\ref{table:platform}). This lead to 18 run states for each program. We
316 use seven MPI programs of the NAS parallel benchmarks : CG, MG, EP, FT, BT, LU
317 and SP. The average normalized errors between the predicted execution time and
318 the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. AS an
319 example, we are present the execution times of the NAS benchmarks as in the
320 figure~(\ref{fig:pred}).
321
322 \section{Performance to Energy Competition}
323 This section demonstrates our approach for choosing the optimal scaling
324 factor. This factor gives maximum energy reduction taking into account the
325 execution time for both computation and communication times . The relation
326 between the energy and the performance are nonlinear and complex, because the
327 relation of the energy with scaling factor is nonlinear and with the performance
328 it is linear see~\cite{17}. The relation between the energy and the performance
329 is not straightforward. Moreover, they are not measured using the same metric.
330 For solving this problem, we normalize the energy by calculating the ratio
331 between the consumed energy with scaled frequency and the consumed energy
332 without scaled frequency :
333 \begin{equation}
334   \label{eq:enorm}
335   E_{Norm} = \frac{E_{Reduced}}{E_{Original}}
336           = \frac{ P_{dyn} \cdot S_i^{-2} \cdot
337                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
338                P_{static} \cdot T_1 \cdot S_i \cdot N  }{
339               P_{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
340               P_{static} \cdot T_1 \cdot N }
341 \end{equation}
342 \AG{Use \texttt{\textbackslash{}text\{xxx\}} or
343   \texttt{\textbackslash{}textit\{xxx\}} for all subscripted words in equations
344   (e.g. \mbox{\texttt{E\_\{\textbackslash{}text\{Norm\}\}}}).
345
346   Don't hesitate to define new commands :
347   \mbox{\texttt{\textbackslash{}newcommand\{\textbackslash{}ENorm\}\{E\_\{\textbackslash{}text\{Norm\}\}\}}}
348 }
349 By the same way we can normalize the performance as follows :
350 \begin{equation}
351   \label{eq:pnorm}
352   P_{Norm} = \frac{T_{New}}{T_{Old}}
353           = \frac{T_{\textit{Max Comp Old}} \cdot S +
354               T_{\textit{Max Comm Old}}}{T_{Old}}
355 \end{equation}
356 The second problem is the optimization operation for both energy and performance
357 is not in the same direction. In other words, the normalized energy and the
358 performance curves are not in the same direction see figure~(\ref{fig:r2}).
359 While the main goal is to optimize the energy and performance in the same
360 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
361 scaling factor \emph S reduce both the energy and the performance
362 simultaneously. But the main objective is to produce maximum energy reduction
363 with minimum performance reduction. Many researchers used different strategies
364 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
365 big overhead to the algorithm for selecting the suitable frequency. In this
366 paper we are present a method to find the optimal scaling factor \emph S for
367 optimize both energy and performance simultaneously without adding big
368 overheads.  Our solution for this problem is to make the optimization process
369 have the same direction. Therefore, we inverse the equation of normalize
370 performance as follows :
371 \begin{equation}
372   \label{eq:pnorm_en}
373   P^{-1}_{Norm} = \frac{T_{Old}}{T_{New}}
374                = \frac{T_{Old}}{T_{\textit{Max Comp Old}} \cdot S +
375                  T_{\textit{Max Comm Old}}}
376 \end{equation}
377 \begin{figure}
378   \centering
379   \subfloat[Converted Relation.]{\includegraphics[scale=0.70]{file.eps}\label{fig:r1}}
380   \subfloat[Real Relation.]{\includegraphics[scale=0.70]{file3.eps}\label{fig:r2}}
381   \label{fig:rel}
382   \caption{The Energy and Performance Relation}
383 \end{figure}
384 Then, we can modelize our objective function as finding the maximum distance
385 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
386 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
387 the minimum energy consumption with minimum execution time (better performance)
388 in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
389 following form:
390 \begin{equation}
391   \label{eq:max}
392   \textit{MaxDist} = \max (\overbrace{P^{-1}_{Norm}}^{\text{Maximize}} -
393                            \overbrace{E_{Norm}}^{\text{Minimize}} )
394 \end{equation}
395 Then we can select the optimal scaling factor that satisfy the
396 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
397 static power values stored in a data file. Moreover, this function works in
398 optimal way when the energy function has a convex form with frequency scaling
399 factor as shown in~\cite{15,3,19}. Energy measurement model is not the
400 objective of this paper and we choose Rauber's model as an example with two
401 reasons that mentioned before.
402
403 \section{Optimal Scaling Factor for Performance and Energy}
404
405 In the previous section we described the objective function that satisfy our
406 goal in discovering optimal scaling factor for both performance and energy at
407 the same time. Therefore, we develop an energy to performance scaling algorithm
408 (EPSA). This algorithm is simple and has a direct way to calculate the optimal
409 scaling factor for both energy and performance at the same time.
410 \begin{algorithm}[t]
411   \caption{EPSA}
412   \label{EPSA}
413   \begin{algorithmic}[1]
414     \State  Initialize the variable $Dist=0$
415     \State Set dynamic and static power values.
416     \State Set $P_{states}$ to the number of available frequencies.
417     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
418     \State Set the variable $F_{diff}$ to the scale value between each two frequencies.
419     \For {$i=1$   to   $P_{states} $}
420       \State - Calculate the new frequency as $F_{new}=F_{new} - F_{diff} $
421       \State - Calculate the scale factor $S$ as in EQ~(\ref{eq:s}).
422       \State - Calculate all available scales $S_i$  depend on $S$ as in EQ~(\ref{eq:si}).
423       \State - Select the maximum scale factor $S_1$ from the set of scales $S_i$.
424       \State - Calculate the normalize energy $E_{Norm}=E_{R}/E_{O}$ as in EQ~(\ref{eq:enorm}).
425       \State - Calculate the normalize inverse of performance\par
426                $P_{NormInv}=T_{old}/T_{new}$ as in EQ~(\ref{eq:pnorm_en}).
427       \If{  $(P_{NormInv}-E_{Norm} > Dist$) }
428         \State $S_{optimal} = S$
429         \State $Dist = P_{NormInv} - E_{Norm}$
430       \EndIf
431     \EndFor
432     \State  Return $S_{optimal}$
433   \end{algorithmic}
434 \end{algorithm}
435 The proposed EPSA algorithm works online during the execution time of the MPI
436 program. It selects the optimal scaling factor by gathering some information
437 from the program after one iteration. This algorithm has small execution time
438 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The data
439 required by this algorithm is the computation time and the communication time
440 for each task from the first iteration only. When these times are measured, the
441 MPI program calls the EPSA algorithm to choose the new frequency using the
442 optimal scaling factor. Then the program set the new frequency to the
443 system. The algorithm is called just one time during the execution of the
444 program. The following example shows where and when the EPSA algorithm is called
445 in the MPI program :
446 \begin{minipage}{\textwidth}
447 \AG{Use the same format as for Algorithm~\ref{EPSA}}
448 \begin{lstlisting}[frame=tb]
449 FOR J:=1 to Some_iterations Do
450    -Computations Section.
451    -Communications Section.
452    IF (J==1) THEN
453      -Gather all times of computation and communication
454       from each node.
455      -Call EPSA with these times.
456      -Calculate the new frequency from optimal scale.
457      -Set the new frequency to the system.
458    ENDIF
459 ENDFOR
460 \end{lstlisting}
461 \end{minipage}
462 After obtaining the optimal scale factor from the EPSA algorithm. The program
463 calculates the new frequency $F_i$ for each task proportionally to its time
464 value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
465 can calculate the new frequency $F_i$ as follows :
466 \begin{equation}
467   \label{eq:fi}
468   F_i = \frac{F_{max} \cdot T_i}{S_{optimal} \cdot T_{max}}
469 \end{equation}
470 According to this equation all the nodes may have the same frequency value if
471 they have balanced workloads. Otherwise, they take different frequencies when
472 have imbalanced workloads. Then EQ~(\ref{eq:fi}) works in adaptive way to change
473 the frequency according to the nodes workloads.
474
475 \section{Experimental Results}
476
477 The proposed EPSA algorithm was applied to seven MPI programs of the NAS
478 benchmarks (EP, CG, MG, FT, BT, LU and SP). We work on three classes (A, B and
479 C) for each program. Each program runs on specific number of processors
480 proportional to the size of the class.  Each class represents the problem size
481 ascending from the class A to C. Additionally, depending on some speed up points
482 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
483 respectively. Our experiments are executed on the simulator SimGrid/SMPI
484 v3.10. We design a platform file that simulates a cluster with one core per
485 node. This cluster is a homogeneous architecture with distributed memory. The
486 detailed characteristics of our platform file are shown in the
487 table~(\ref{table:platform}). Each node in the cluster has 18 frequency values
488 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
489 frequencies.
490 \begin{table}[ht]
491   \caption{Platform File Parameters}
492   % title of Table
493   \centering
494   \AG{Use e.g. $5\times 10^{-7}$ instead of 5E-7}
495   \begin{tabular}{ | l | l | l |l | l |l |l |  p{2cm} |}
496     \hline
497     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
498     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
499     2.5 &800 & 2.25 GBps &5E-7 s & 1 GBps & 5E-5 s&Full  \\
500     GHz& MHz&  & & &  &Duplex  \\\hline
501   \end{tabular}
502   \label{table:platform}
503 \end{table}
504 Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
505 the NAS MPI programs while assuming the power dynamic is equal to 20W and the
506 power static is equal to 4W for all experiments. We run the proposed EPSA
507 algorithm for all these programs. The results showed that the algorithm selected
508 different scaling factors for each program depending on the communication
509 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
510 there are different distances between the normalized energy and the normalized
511 inversed performance curves, because there are different communication features
512 for each MPI program.  When there are little or not communications, the inversed
513 performance curve is very close to the energy curve. Then the distance between
514 the two curves is very small. This lead to small energy savings. The opposite
515 happens when there are a lot of communication, the distance between the two
516 curves is big.  This lead to more energy savings (e.g. CG and FT), see
517 table~(\ref{table:factors results}). All discovered frequency scaling factors
518 optimize both the energy and the performance simultaneously for all the NAS
519 programs. In table~(\ref{table:factors results}), we record all optimal scaling
520 factors results for each program on class C. These factors give the maximum
521 energy saving percent and the minimum performance degradation percent in the
522 same time over all available scales.
523 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
524   \centering
525   \includegraphics[scale=0.47]{ep.eps}
526   \includegraphics[scale=0.47]{cg.eps}
527   \includegraphics[scale=0.47]{sp.eps}
528   \includegraphics[scale=0.47]{lu.eps}
529   \includegraphics[scale=0.47]{bt.eps}
530   \includegraphics[scale=0.47]{ft.eps}
531   \caption{Optimal scaling factors for The NAS MPI Programs}
532   \label{fig:nas}
533 \end{figure}
534 \begin{table}[width=\textwidth,height=\textheight,keepaspectratio]
535   \caption{Optimal Scaling Factors Results}
536   % title of Table
537   \centering
538   \AG{Use the same number of decimals for all numbers in a column,
539     and vertically align the numbers along the decimal points.
540     The same for all the following tables.}
541   \begin{tabular}{ | l | l | l |l | l | p{2cm} |}
542     \hline
543     Program & Optimal & Energy  & Performance&Energy-Perf.\\
544     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
545     CG & 1.56 &39.23 & 14.88 & 24.35\\ \hline
546     MG & 1.47 &34.97&21.7& 13.27   \\ \hline
547     EP & 1.04 &22.14&20.73 &1.41\\ \hline
548     LU & 1.388 &35.83&22.49 &13.34\\ \hline
549     BT & 1.315 &29.6&21.28 &8.32\\ \hline
550     SP & 1.388 &33.48 &21.36&12.12\\ \hline
551     FT & 1.47 &34.72 &19&15.72\\ \hline
552   \end{tabular}
553   \label{table:factors results}
554   % is used to refer this table in the text
555 \end{table}
556
557 As shown in the table~(\ref{table:factors results}), when the optimal scaling
558 factor has big value we can gain more energy savings for example as in CG and
559 FT. The opposite happens when the optimal scaling factor is small value as
560 example BT and EP. Our algorithm selects big scaling factor value when the
561 communication and the other slacks times are big and smaller ones in opposite
562 cases. In EP there are no communications inside the iterations. This make our
563 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
564
565 \section{Comparing Results}
566
567 In this section, we compare our EPSA algorithm results with Rauber's
568 methods~\cite{3}. He had two scenarios, the first is to reduce energy to optimal
569 level without considering the performance as in EQ~(\ref{eq:sopt}). We refer to
570 this scenario as $Rauber_{E}$. The second scenario is similar to the first
571 except setting the slower task to the maximum frequency (when the scale $S=1$)
572 to keep the performance from degradation as mush as possible. We refer to this
573 scenario as $Rauber_{E-P}$. The comparison is made in tables~(\ref{table:compare
574   Class A},\ref{table:compare Class B},\ref{table:compare Class C}). These
575 tables show the results of our EPSA and Rauber's two scenarios for all the NAS
576 benchmarks programs for classes A,B and C.
577 \begin{table}[ht]
578   \caption{Comparing Results for  The NAS Class A}
579   % title of Table
580   \centering
581   \begin{tabular}{ | l | l | l |l | l |l|  }
582     \hline
583     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
584     name &name&value& Saving \%&Degradation \% &Distance
585     \\ \hline
586     % \rowcolor[gray]{0.85}
587     EPSA&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
588     $Rauber_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.5\\ \hline
589     $Rauber_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
590
591     EPSA&MG & 1.47 &27.66&16.82&10.84\\ \hline
592     $Rauber_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
593     $Rauber_{E}$&MG &2.14&34.48&33.65&0.8 \\ \hline
594
595     EPSA&EP &1.19 &25.32&20.79&4.53\\ \hline
596     $Rauber_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
597     $Rauber_{E}$&EP&2.05&42.09&57.59&-15.5\\ \hline
598
599     EPSA&LU&1.56& 39.55 &19.38& 20.17\\ \hline
600     $Rauber_{E-P}$&LU&2.14&45.62&27&18.62 \\ \hline
601     $Rauber_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
602
603     EPSA&BT&1.315& 29.6&20.53&9.07 \\ \hline
604     $Rauber_{E-P}$&BT&2.1&45.53&49.63&-4.1\\ \hline
605     $Rauber_{E}$&BT&2.1&43.93&52.86&-8.93\\ \hline
606
607     EPSA&SP&1.388& 33.51&15.65&17.86 \\ \hline
608     $Rauber_{E-P}$&SP&2.11&45.62&42.52&3.1\\ \hline
609     $Rauber_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
610
611     EPSA&FT&1.25& 25&10.8&14.2 \\ \hline
612     $Rauber_{E-P}$&FT&2.1&39.29&34.3&4.99 \\ \hline
613     $Rauber_{E}$&FT&2.1&37.56&38.21&-0.65\\ \hline
614   \end{tabular}
615   \label{table:compare Class A}
616   % is used to refer this table in the text
617 \end{table}
618 \begin{table}[ht]
619   \caption{Comparing Results for The NAS Class B}
620   % title of Table
621   \centering
622   \begin{tabular}{ | l | l | l |l | l |l|  }
623     \hline
624     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
625     name &name&value& Saving \%&Degradation \% &Distance
626     \\ \hline
627     % \rowcolor[gray]{0.85}
628     EPSA&CG & 1.66 &39.23&16.63&22.6   \\ \hline
629     $Rauber_{E-P}$&CG &2.15 &45.34&27.6&17.74\\ \hline
630     $Rauber_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
631
632     EPSA&MG & 1.47 &34.98&18.35&16.63\\ \hline
633     $Rauber_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
634     $Rauber_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
635
636     EPSA&EP &1.08 &20.29&17.15&3.14 \\ \hline
637     $Rauber_{E-P}$&EP&2&42.38&56.88&-14.5\\ \hline
638     $Rauber_{E}$&EP&2&39.73&59.94&-20.21\\ \hline
639
640     EPSA&LU&1.47&38.57&21.34&17.23 \\ \hline
641     $Rauber_{E-P}$&LU&2.1&43.62&36.51&7.11 \\ \hline
642     $Rauber_{E}$&LU&2.1&43.61&38.54&5.07 \\ \hline
643
644     EPSA&BT&1.315& 29.59&20.88&8.71\\ \hline
645     $Rauber_{E-P}$&BT&2.1&44.53&53.05&-8.52\\ \hline
646     $Rauber_{E}$&BT&2.1&42.93&52.806&-9.876\\ \hline
647
648     EPSA&SP&1.388&33.44&19.24&14.2 \\ \hline
649     $Rauber_{E-P}$&SP&2.15&45.69&43.2&2.49\\ \hline
650     $Rauber_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
651
652     EPSA&FT&1.388&34.4&14.57&19.83 \\ \hline
653     $Rauber_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
654     $Rauber_{E}$&FT&2.13&43.04&37.9&5.14\\ \hline
655   \end{tabular}
656   \label{table:compare Class B}
657   % is used to refer this table in the text
658 \end{table}
659
660 \begin{table}[ht]
661   \caption{Comparing Results for The NAS Class C}
662   % title of Table
663   \centering
664   \begin{tabular}{ | l | l | l |l | l |l|  }
665     \hline
666     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
667     name &name&value& Saving \%&Degradation \% &Distance
668     \\ \hline
669     % \rowcolor[gray]{0.85}
670     EPSA&CG & 1.56 &39.23&14.88&24.35  \\ \hline
671     $Rauber_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
672     $Rauber_{E}$&CG &2.15 &45.36&26.7&18.66\\ \hline
673
674     EPSA&MG & 1.47 &34.97&21.697&13.273\\ \hline
675     $Rauber_{E-P}$&MG &2.15&43.65&40.45&3.2 \\ \hline
676     $Rauber_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
677
678     EPSA&EP &1.04 &22.14&20.73&1.41 \\ \hline
679     $Rauber_{E-P}$&EP&1.92&39.4&56.33&-16.93\\ \hline
680     $Rauber_{E}$&EP&1.92&38.1&56.35&-18.25\\ \hline
681
682     EPSA&LU&1.388&35.83&22.49&13.34 \\ \hline
683     $Rauber_{E-P}$&LU&2.15&44.97&41&3.97 \\ \hline
684     $Rauber_{E}$&LU&2.15&44.97&41.8&3.17 \\ \hline
685
686     EPSA&BT&1.315& 29.6&21.28&8.32\\ \hline
687     $Rauber_{E-P}$&BT&2.13&45.6&49.84&-4.24\\ \hline
688     $Rauber_{E}$&BT&2.13&44.9&55.16&-10.26\\ \hline
689
690     EPSA&SP&1.388&33.48&21.35&12.12\\ \hline
691     $Rauber_{E-P}$&SP&2.1&45.69&43.6&2.09\\ \hline
692     $Rauber_{E}$&SP&2.1&45.75&44.1&1.65\\ \hline
693
694     EPSA&FT&1.47&34.72&19&15.72 \\ \hline
695     $Rauber_{E-P}$&FT&2.04&39.4&37.1&2.3\\ \hline
696     $Rauber_{E}$&FT&2.04&39.35&37.7&1.65\\ \hline
697   \end{tabular}
698 \label{table:compare Class C}
699 % is used to refer this table in the text
700 \end{table}
701 As shown in these tables our scaling factor is not optimal for energy saving
702 such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
703 the energy and the performance simultaneously. Our EPSA optimal scaling factors
704 has better simultaneous optimization for both the energy and the performance
705 compared to Rauber's energy-performance method ($Rauber_{E-P}$). Also, in
706 ($Rauber_{E-P}$) method when setting the frequency to maximum value for the
707 slower task lead to a small improvement of the performance. Also the results
708 show that this method keep or improve energy saving. Because of the energy
709 consumption decrease when the execution time decreased while the frequency value
710 increased.
711
712 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
713 percent and the performance degradation percent. Therefore, this means it is the
714 same resultant of our objective function EQ~(\ref{eq:max}). Our algorithm always
715 gives positive energy to performance trade offs while Rauber's method
716 ($Rauber_{E-P}$) gives in some time negative trade offs such as in BT and
717 EP. The positive trade offs with highest values lead to maximum energy savings
718 concatenating with less performance degradation and this the objective of this
719 paper. While the negative trade offs refers to improving energy saving (or may
720 be the performance) while degrading the performance (or may be the energy) more
721 than the first.
722 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
723   \centering
724   \includegraphics[scale=0.60]{compare_class_A.pdf}
725   \includegraphics[scale=0.60]{compare_class_B.pdf}
726   \includegraphics[scale=0.60]{compare_class_c.pdf}
727   % use scale 35 for all to be in the same line
728   \caption{Comparing Our EPSA with Rauber's Methods}
729   \label{fig:compare}
730 \end{figure}
731
732 \AG{\texttt{bibtex} gives many errors, please correct them}
733 \bibliographystyle{plain}
734 \bibliography{my_reference}
735 \end{document}
736
737 %%% Local Variables:
738 %%% mode: latex
739 %%% TeX-master: t
740 %%% fill-column: 80
741 %%% ispell-local-dictionary: "american"
742 %%% End:
743
744 %  LocalWords:  Badri Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
745 %  LocalWords:  CMOS EQ EPSA