]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
More remarks.
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12
13 \usepackage[autolanguage,np]{numprint}
14 \renewcommand*\npunitcommand[1]{\text{#1}}
15
16 \usepackage{xspace}
17 \usepackage[textsize=footnotesize]{todonotes}
18 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
19
20 \begin{document}
21
22 \title{Optimal Dynamic Frequency Scaling for Energy-Performance of Parallel MPI Programs}
23
24 \author{%
25   \IEEEauthorblockN{%
26     Jean-Claude Charr,
27     Raphaël Couturier,
28     Ahmed Fanfakh and
29     Arnaud Giersch
30   }
31   \IEEEauthorblockA{%
32     FEMTO-ST Institute\\
33     University of Franche-Comté
34   }
35 }
36
37 \maketitle
38
39 \AG{``Optimal'' is a bit pretentious in the title.\\
40   Complete affiliation, add an email address, etc.}
41
42 \begin{abstract}
43   The important technique for energy reduction of parallel systems is CPU
44   frequency scaling. This operation is used by many researchers to reduce energy
45   consumption in many ways. Frequency scaling operation also has a big impact on
46   the performances. In some cases, the performance degradation ratio is bigger
47   than energy saving ratio when the frequency is scaled to low level. Therefore,
48   the trade offs between the energy and performance becomes more important topic
49   when using this technique. In this paper we developed an algorithm that select
50   the frequency scaling factor for both energy and performance simultaneously.
51   This algorithm takes into account the communication times when selecting the
52   frequency scaling factor. It works online without training or profiling to
53   have a very small overhead.  The algorithm has better energy-performance trade
54   offs compared to other methods.
55 \end{abstract}
56
57 \section{Introduction}
58 \label{sec.intro}
59
60 The need for computing power is still increasing and it is not expected to slow
61 down in the coming years. To satisfy this demand, researchers and supercomputers
62 constructors have been regularly increasing the number of computing cores in
63 supercomputers (for example in November 2013, according to the TOP500
64 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
65 millions of cores and delivers more than 33 Tflop/s while consuming 17808
66 kW). This large increase in number of computing cores has led to large energy
67 consumption by these architectures. Moreover, the price of energy is expected to
68 continue its ascent according to the demand. For all these reasons energy
69 reduction became an important topic in the high performance computing field. To
70 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
71 Scaling) operations which reduce dynamically the frequency and voltage of cores
72 and thus their energy consumption. However, this operation also degrades the
73 performance of computation. Therefore researchers try to reduce the frequency to
74 minimum when processors are idle (waiting for data from other processors or
75 communicating with other processors). Moreover, depending on their objectives
76 they use heuristics to find the best scaling factor during the computation. If
77 they aim for performance they choose the best scaling factor that reduces the
78 consumed energy while affecting as little as possible the performance. On the
79 other hand, if they aim for energy reduction, the chosen scaling factor must
80 produce the most energy efficient execution without considering the degradation
81 of the performance. It is important to notice that lowering the frequency to
82 minimum value does not always give the most efficient execution due to energy
83 leakage. The best scaling factor might be chosen during execution (online) or
84 during a pre-execution phase.  In this paper we emphasize to develop an
85 algorithm that selects a frequency scaling factor that simultaneously takes into
86 consideration  the energy consumption and the performance. The
87 main objective of HPC systems is to run the application with less execution
88 time. Therefore, our algorithm selects the scaling factor online with
89 very small footprint. The proposed algorithm takes into account the
90 communication times of the MPI program to choose the scaling factor. This
91 algorithm has ability to predict both energy consumption and execution time over
92 all available scaling factors.  The prediction achieved depends on some
93 computing time information, gathered at the beginning of the runtime.  We apply
94 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
95 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
96 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
97 over an homogeneous distributed memory architecture. Furthermore, we compare the
98 proposed algorithm with Rauber and Rünger methods~\cite{3}.
99 The comparison's results show that our
100 algorithm gives better energy-time trade off.
101
102 This paper is organized as follows: Section~\ref{sec.relwork} presents the works
103 from other authors.  Section~\ref{sec.ptasks} shows the execution of parallel
104 tasks and sources of idle times. Section~\ref{sec.energy} resumes the energy
105 model of homogeneous platform. Section~\ref{sec.mpip} evaluates the performance
106 of MPI program.  Section~\ref{sec.verif} verifies the performance prediction
107 model. Section~\ref{sec.compet} presents the energy-performance trade offs
108 objective function. Section~\ref{sec.optim} demonstrates the proposed
109 energy-performance algorithm. Section~\ref{sec.expe} presents the results of our
110 experiments.  Section~\ref{sec.compare} shows the comparison results. Finally,
111 we conclude in Section~\ref{sec.concl}.
112 \AG{There are too many sections!}
113 \section{Related Works}
114 \label{sec.relwork}
115
116 \AG{Consider introducing the models (sec.~\ref{sec.ptasks},
117   maybe~\ref{sec.energy}) before related works}
118
119 In the this section some heuristics to compute the scaling factor are
120 presented and classified in two parts: offline and online methods.
121
122 \subsection{The offline DVFS orientations}
123
124 The DVFS offline methods are static and are not executed during the runtime of
125 the program. Some approaches used heuristics to select the best DVFS state
126 during the compilation phases as for example in Azevedo et al.~\cite{40}. They
127 use dynamic voltage scaling (DVS) algorithm to choose the DVS setting when there
128 are dependency points between tasks. While in~\cite{29}, Xie et al. used
129 breadth-first search algorithm to do that. Their goal is to save energy with
130 time limits. Another approach gathers and stores the runtime information for
131 each DVFS state, then selects the suitable DVFS offline to optimize energy-time
132 trade offs. As an example, Rountree et al.~\cite{8} use liner programming
133 algorithm, while in~\cite{38,34}, Cochran et al. use multi logistic regression
134 algorithm for the same goal. The offline study that shows the DVFS impact on the
135 communication time of the MPI program is~\cite{17}, where Freeh et al. show that
136 these times do not change when the frequency is scaled down.
137
138 \subsection{The online DVFS orientations}
139
140 The objective of the online DVFS orientations is to dynamically compute and set
141 the frequency of the CPU for saving energy during the runtime of the
142 programs. Estimating and predicting approaches for the energy-time trade offs
143 are developed by Kimura, Peraza, Yu-Liang et al.  ~\cite{11,2,31}. These works
144 select the best DVFS setting depending on the slack times. These times happen
145 when the processors have to wait for data from other processors to compute their
146 task. For example, during the synchronous communications that take place in MPI
147 programs, some processors are idle. The optimal DVFS can be selected using
148 learning methods. Therefore, in Dhiman, Hao Shen et al.  ~\cite{39,19} used
149 machine learning to converge to the suitable DVFS configuration. Their learning
150 algorithms take big time to converge when the number of available frequencies is
151 high. Also, the communication sections of the MPI program can be used to save
152 energy. In~\cite{1}, Lim et al. developed an algorithm that detects the
153 communication sections and changes the frequency during these sections
154 only. This approach changes the frequency many times because an iteration may
155 contain more than one communication section. The domain of analytical modeling
156 can also be used for choosing the optimal frequency as in Rauber and
157 Rünger~\cite{3}. They developed an analytical mathematical model to determine
158 the optimal frequency scaling factor for any number of concurrent tasks. They
159 set the slowest task to maximum frequency for maintaining performance.  In this
160 paper we compare our algorithm with Rauber and Rünger model~\cite{3}, because
161 their model can be used for any number of concurrent tasks for homogeneous
162 platforms. The primary contributions of this paper are:
163 \begin{enumerate}
164 \item Selecting the frequency scaling factor for simultaneously optimizing energy and performance,
165    while taking into account the communication time.
166 \item Adapting our scaling factor to take into account the imbalanced tasks.
167 \item The execution time of our algorithm is very small when compared to other
168   methods (e.g.,~\cite{19}).
169 \item The proposed algorithm works online without profiling or training as
170   in~\cite{38,34}.
171 \end{enumerate}
172
173 \section{Parallel Tasks Execution on Homogeneous Platform}
174 \label{sec.ptasks}
175
176 A homogeneous cluster consists of identical nodes in terms of hardware and software. 
177 Each node has its own memory and at least one processor which can
178 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
179 executed on this model can be either synchronous or asynchronous. In this paper
180 we consider execution of the synchronous tasks on distributed homogeneous
181 platform. These tasks can exchange the data via synchronous message passing.
182 \begin{figure*}[t]
183   \centering
184   \subfloat[Sync. Imbalanced Communications]{\includegraphics[scale=0.67]{commtasks}\label{fig:h1}}
185   \subfloat[Sync. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
186   \caption{Parallel Tasks on Homogeneous Platform}
187   \label{fig:homo}
188 \end{figure*}
189 Therefore, the execution time of a task consists of the computation time and the
190 communication time. Moreover, the synchronous communications between tasks can
191 lead to idle time while tasks wait at the synchronization barrier for other tasks to
192 finish their communications (see figure~(\ref{fig:h1})). The imbalanced communications happen when nodes have to send/receive different amount of data or each node is communicates with different number of nodes. Another source for idle times is the imbalanced computations. This happens when processing different
193 amounts of data on each processor  (see figure~(\ref{fig:h2})). In
194 this case the fastest tasks have to wait at the synchronization barrier for the
195 slowest tasks to finish their job. In both cases the overall execution time
196 of the program is the execution time of the slowest task as:
197 \begin{equation}
198   \label{eq:T1}
199   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
200 \end{equation}
201 where $T_i$ is the execution time of task $i$.
202
203 \section{Energy Model for Homogeneous Platform}
204 \label{sec.energy}
205
206 The energy consumption by the processor consists of two power metrics: the
207 dynamic and the static power. This general power formulation is used by many
208 researchers~\cite{9,3,15,26}. The dynamic power of the CMOS processors
209 $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
210 the supply voltage $V$ and operational frequency $f$ respectively as follow:
211 \begin{equation}
212   \label{eq:pd}
213   P_\textit{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
214 \end{equation}
215 The static power $P_{static}$ captures the leakage power consumption as well as
216 the power consumption of peripheral devices like the I/O subsystem.
217 \begin{equation}
218   \label{eq:ps}
219    P_\textit{static}  = V \cdot N \cdot K_{design} \cdot I_{leak}
220 \end{equation}
221 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
222 design dependent parameter and $I_{leak}$ is a technology-dependent
223 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
224 of the dynamic and the static power multiplied by the execution time for example
225 see~\cite{36,15}.
226 \AG{What's an ``execution time for example'' ? Add the correct punctuation.}
227 \begin{equation}
228   \label{eq:eind}
229    E_\textit{ind} = ( P_\textit{dyn} + P_\textit{static} ) \cdot T
230 \end{equation}
231 The dynamic voltage and frequency scaling (DVFS) is a process that is allowed in
232 modern processors to reduce the dynamic power by scaling down the voltage and
233 frequency. Its main objective is to reduce the overall energy
234 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
235 supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
236 equation is used to study the change of the dynamic voltage with respect to
237 various frequency values in~\cite{3}. The reduction process of the frequency are
238 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
239 maximum and the new frequency as in EQ~(\ref{eq:s}).
240 \begin{equation}
241   \label{eq:s}
242  S = \frac{F_\textit{max}}{F_\textit{new}}
243 \end{equation}
244 The value of the scale $S$ is greater than 1 when changing the frequency to any
245 new frequency value~(\emph {P-state}) in governor, the CPU governor is an
246 interface driver supplied by the operating system kernel (e.g. Linux) to
247 lowering core's frequency.  The scaling factor is equal to 1 when the frequency
248 set is to the maximum frequency.  The energy consumption model for parallel
249 homogeneous platform depends on the scaling factor \emph S. This factor reduces
250 quadratically the dynamic power.  Also, this factor increases the static energy
251 linearly because the execution time is increased~\cite{36}.  The energy model
252 depending on the frequency scaling factor for homogeneous platform for any
253 number of concurrent tasks was developed by Rauber and Rünger~\cite{3}. This
254 model considers the two power metrics for measuring the energy of the parallel
255 tasks as in EQ~(\ref{eq:energy}):
256
257 \begin{equation}
258   \label{eq:energy}
259   E = P_\textit{dyn} \cdot S_1^{-2} \cdot
260     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
261     P_\textit{static} \cdot T_1 \cdot S_1 \cdot N
262  \hfill
263 \end{equation}
264 where \emph N is the number of parallel nodes, $T_1 $ is the time of the slowest
265 task, $T_i$ is the time of the task $i$ and $S_1$ is the maximum scaling factor
266 for the slower task. The scaling factor $S_1$, as in EQ~(\ref{eq:s1}), selects
267 from the set of scales values $S_i$. Each of these scales are proportional to
268 the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
269 \begin{equation}
270   \label{eq:s1}
271   S_1 = \max_{i=1,2,\dots,F} S_i
272 \end{equation}
273 \begin{equation}
274   \label{eq:si}
275   S_i = S \cdot \frac{T_1}{T_i}
276       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
277 \end{equation}
278 where $F$ is the number of available frequencies. In this paper we depend on
279 Rauber and Rünger energy model EQ~(\ref{eq:energy}) for two reasons: (1) this
280 model is used for homogeneous platform that we work on in this paper, and (2) we
281 compare our algorithm with Rauber and Rünger scaling model.  Rauber and Rünger
282 scaling factor that reduce energy consumption derived from the
283 EQ~(\ref{eq:energy}). They take the derivation for this equation (to be
284 minimized) and set it to zero to produce the scaling factor as in
285 EQ~(\ref{eq:sopt}).
286 \begin{equation}
287   \label{eq:sopt}
288   S_\textit{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_\textit{dyn}}{P_\textit{static}} \cdot
289     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
290 \end{equation}
291
292 \section{Performance Evaluation of MPI Programs}
293 \label{sec.mpip}
294
295 The performance (execution time) of  parallel MPI applications depend on
296 the time of the slowest task as in figure~(\ref{fig:homo}). Normally the
297 execution time of the parallel programs are proportional to the operational
298 frequency. Therefore, any DVFS operation for the energy reduction increases the
299 execution time of the parallel program. As shown in EQ~(\ref{eq:energy}) the
300 energy is affected by the scaling factor $S$. This factor also has a great impact
301 on the performance. When scaling down the frequency to the new value according
302 to EQ~(\ref{eq:s}), the value of the scale $S$ has inverse relation with
303 new frequency value ($S \propto \frac{1}{F_{new}}$). Also when decreasing the
304 frequency value, the execution time increases. Then the new frequency value has
305 inverse relation with time ($F_{new} \propto \frac{1}{T}$). This leads to the
306 frequency scaling factor $S$ proportional linearly with execution time ($S
307 \propto T$). Large scale MPI applications such as NAS benchmarks have
308 considerable amount of communications embedded in these programs. During the
309 communication process the processors remain idle until the communication has
310 finished. For that reason any change in the frequency has no impact on the time
311 of communication but it has obvious impact on the time of
312 computation~\cite{17}. We have made many tests on a real cluster to prove that the
313 \AG{Caution: in general, tests don't \emph{prove} anything}
314 frequency scaling factor \emph S has a linear relation with computation time
315 only. To predict the execution time of MPI program, the communication time and 
316 the computation time for the slower task must be first precisely specified. Secondly, 
317 these times are used to predict the execution time for any MPI program as a function of 
318 the new scaling factor as in the EQ~(\ref{eq:tnew}).
319 \AG{EQ~xx, without ``the''. Change everywhere.}
320 \begin{equation}
321   \label{eq:tnew}
322  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
323 \end{equation}
324 The above equation shows that the scaling factor \emph S has linear relation
325 with the computation time without affecting the communication time. The
326 communication time consists of the beginning times which an MPI calls for
327 sending or receiving till the message is synchronously sent or received. In this
328 paper we predict the execution time of the program for any new scaling factor
329 value. Depending on this prediction we can produce our energy-performance scaling
330 method as we will show in the coming sections. In the next section we make to finishan\AG{finishan?}
331 investigation study for the EQ~(\ref{eq:tnew}).
332
333 \section{Performance Prediction Verification}
334 \label{sec.verif}
335
336 \AG{This section presents experimental results. It should be put just before Sec.~\ref{sec.expe}}
337 In this section we evaluate the precision of our performance prediction methods
338 on the NAS benchmarks. We use the EQ~(\ref{eq:tnew}) that predicts the execution
339 time for any scale value. The NAS programs run the class B for comparing the
340 real execution time with the predicted execution time. Each program runs offline
341 with all available scaling factors on 8 or 9 nodes to produce real execution
342 time values. These scaling factors are computed by dividing the maximum
343 frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
344 SimGrid/SMPI v3.10 to run the NAS programs.
345 \begin{figure*}[t]
346   \centering
347   \includegraphics[width=.4\textwidth]{cg_per.eps}\qquad%
348   \includegraphics[width=.4\textwidth]{mg_pre.eps}
349   \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
350   \includegraphics[width=.4\textwidth]{lu_pre.eps}
351   \caption{Fitting Predicted to Real Execution Time}
352   \label{fig:pred}
353 \end{figure*}
354 %see Figure~\ref{fig:pred}
355 In our cluster there are 18 available frequency states for each processor from
356 2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
357 frequencies. For more details on the characteristics of the platform refer to
358 table~(\ref{table:platform}). This lead to 18 run states for each program. We
359 use seven MPI programs of the NAS parallel benchmarks: CG, MG, EP, FT, BT, LU
360 and SP. The average normalized errors between the predicted execution time and
361 the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. AS an
362 example, we are present the execution times of the NAS benchmarks as in the
363 figure~(\ref{fig:pred}).
364
365 \section{Performance to Energy Competition}
366 \label{sec.compet}
367
368 This section demonstrates our approach for choosing the optimal scaling
369 factor. This factor gives maximum energy reduction taking into account the
370 execution time for both computation and communication times. The relation
371 between the energy and the performance are nonlinear and complex, because the
372 relation of the energy with scaling factor is nonlinear and with the performance
373 it is linear see~\cite{17}. The relation between the energy and the performance
374 is not straightforward. Moreover, they are not measured using the same metric.
375 For solving this problem, we normalize the energy by calculating the ratio
376 between the consumed energy with scaled frequency and the consumed energy
377 without scaled frequency:
378 \begin{multline}
379   \label{eq:enorm}
380   E_\textit{Norm} = \frac{ E_\textit{Reduced}}{E_\textit{Original}} \\
381         {} = \frac{P_\textit{dyn} \cdot S_i^{-2} \cdot
382                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
383                P_\textit{static} \cdot T_1 \cdot S_i \cdot N  }{
384               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
385               P_\textit{static} \cdot T_1 \cdot N }
386 \end{multline}
387 By the same way we can normalize the performance as follows:
388 \begin{equation}
389   \label{eq:pnorm}
390   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}
391           = \frac{T_\textit{Max Comp Old} \cdot S +
392            T_\textit{Max Comm Old}}{ T_\textit{Old}}
393 \end{equation}
394 The second problem is the optimization operation for both energy and performance
395 is not in the same direction. In other words, the normalized energy and the
396 performance curves are not in the same direction see figure~(\ref{fig:r2}).
397 While the main goal is to optimize the energy and performance in the same
398 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
399 scaling factor \emph S reduce both the energy and the performance
400 simultaneously. But the main objective is to produce maximum energy reduction
401 with minimum performance reduction. Many researchers used different strategies
402 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
403 big overhead to the algorithm for selecting the suitable frequency. In this
404 paper we are present a method to find the optimal scaling factor \emph S for
405 optimize both energy and performance simultaneously without adding big
406 overheads.  Our solution for this problem is to make the optimization process
407 have the same direction. Therefore, we inverse the equation of normalize
408 performance as follows:
409 \begin{equation}
410   \label{eq:pnorm_en}
411   P^{-1}_\textit{Norm} = \frac{ T_\textit{Old}}{ T_\textit{New}}
412                = \frac{ T_\textit{Old}}{T_\textit{Max Comp Old} \cdot S +
413                  T_\textit{Max Comm Old}}
414 \end{equation}
415 \begin{figure*}
416   \centering
417   \subfloat[Converted Relation.]{%
418     \includegraphics[width=.4\textwidth]{file.eps}\label{fig:r1}}%
419   \qquad%
420   \subfloat[Real Relation.]{%
421     \includegraphics[width=.4\textwidth]{file3.eps}\label{fig:r2}}
422   \label{fig:rel}
423   \caption{The Energy and Performance Relation}
424 \end{figure*}
425 Then, we can modelize our objective function as finding the maximum distance
426 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
427 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
428 the minimum energy consumption with minimum execution time (better performance)
429 in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
430 following form:
431 \begin{equation}
432   \label{eq:max}
433   \textit{MaxDist} = \max (\overbrace{P^{-1}_\textit{Norm}}^{\text{Maximize}} -
434                            \overbrace{E_\textit{Norm}}^{\text{Minimize}} )
435 \end{equation}
436 Then we can select the optimal scaling factor that satisfy the
437 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
438 static power values stored in a data file. Moreover, this function works in
439 optimal way when the energy function has a convex form with frequency scaling
440 factor as shown in~\cite{15,3,19}. Energy measurement model is not the
441 objective of this paper and we choose Rauber and Rünger model as an example with two
442 reasons that mentioned before.
443
444 \section{Optimal Scaling Factor for Performance and Energy}
445 \label{sec.optim}
446
447 In the previous section we described the objective function that satisfy our
448 goal in discovering optimal scaling factor for both performance and energy at
449 the same time. Therefore, we develop an energy to performance scaling algorithm
450 ($EPSA$). This algorithm is simple and has a direct way to calculate the optimal
451 scaling factor for both energy and performance at the same time.
452 \begin{algorithm}[tp]
453   \caption{EPSA}
454   \label{EPSA}
455   \begin{algorithmic}[1]
456     \State  Initialize the variable $Dist=0$
457     \State Set dynamic and static power values.
458     \State Set $P_{states}$ to the number of available frequencies.
459     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
460     \State Set the variable $F_{diff}$ to the scale value between each two frequencies.
461     \For {$i=1$   to   $P_{states} $}
462       \State - Calculate the new frequency as $F_{new}=F_{new} - F_{diff} $
463       \State - Calculate the scale factor $S$ as in EQ~(\ref{eq:s}).
464       \State - Calculate all available scales $S_i$  depend on $S$ as\par\hspace{1 pt} in EQ~(\ref{eq:si}).
465       \State - Select the maximum scale factor $S_1$ from the set\par\hspace{1 pt} of scales $S_i$.
466       \State - Calculate the normalize energy $E_{Norm}=E_{R}/E_{O}$ 
467                \par\hspace{1 pt}  as in EQ~(\ref{eq:enorm}).
468       \State - Calculate the normalize inverse of performance\par\hspace{1 pt}
469                $P_{NormInv}=T_{old}/T_{new}$ as in EQ~(\ref{eq:pnorm_en}).
470       \If{  $(P_{NormInv}-E_{Norm} > Dist$) }
471         \State $S_{optimal} = S$
472         \State $Dist = P_{NormInv} - E_{Norm}$
473       \EndIf
474     \EndFor
475     \State  Return $S_{optimal}$
476   \end{algorithmic}
477 \end{algorithm}
478 The proposed EPSA algorithm works online during the execution time of the MPI
479 program. It selects the optimal scaling factor by gathering some information
480 from the program after one iteration.
481 \AG{Which information?}
482  This algorithm has small execution time
483 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes).
484 \AG{Algorithmic complexity?}
485  The data
486 required by this algorithm is the computation time and the communication time
487 for each task from the first iteration only. When these times are measured, the
488 MPI program calls the EPSA algorithm to choose the new frequency using the
489 optimal scaling factor. Then the program sets the new frequency to the
490 system\AG[]{???}. The algorithm is called just one time during the execution of the
491 program. The DVFS algorithm~(\ref{dvfs}) shows where and when the EPSA algorithm is called
492 in the MPI program.
493 %\begin{minipage}{\textwidth}
494 %\AG{Use the same format as for Algorithm~\ref{$EPSA$}}
495
496 \begin{algorithm}[tp]
497   \caption{DVFS}
498   \label{dvfs}
499   \begin{algorithmic}[1]
500  \For {$J:=1$ to $Some-Iterations \; $}
501   \State -Computations Section.
502    \State -Communications Section.
503    \If {$(J=1)$} 
504      \State -Gather all times of computation and\par\hspace{13 pt} communication from each node.
505      \State -Call EPSA with these times.
506      \State -Calculate the new frequency from optimal scale.
507      \State -Set the new frequency to the system.
508    \EndIf
509 \EndFor
510 \end{algorithmic}
511 \end{algorithm}
512
513 After obtaining the optimal scale factor from the EPSA algorithm.\AG[]{comma} The program
514 calculates the new frequency $F_i$ for each task proportionally to its time
515 value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
516 can calculate the new frequency $F_i$ as follows:
517 \begin{equation}
518   \label{eq:fi}
519   F_i = \frac{F_\textit{max} \cdot T_i}{S_\textit{optimal} \cdot T_\textit{max}}
520 \end{equation}
521 According to this equation all the nodes may have the same frequency value if
522 they have balanced workloads. Otherwise, they take different frequencies when
523 have imbalanced workloads. Then EQ~(\ref{eq:fi}) works in adaptive way to change
524 the frequency according to the nodes workloads.
525
526 \section{Experimental Results}
527 \label{sec.expe}
528
529 The proposed EPSA algorithm was applied to seven MPI programs of the NAS
530 benchmarks (EP, CG, MG, FT, BT, LU and SP). We work on three classes (A, B and
531 C) for each program. Each program runs on specific number of processors
532 proportional to the size of the class.  Each class represents the problem size
533 ascending from the class A to C. Additionally, depending on some speed up points
534 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
535 respectively. Our experiments are executed on the simulator SimGrid/SMPI
536 v3.10. We design a platform file that simulates a cluster with one core per
537 node. This cluster is a homogeneous architecture with distributed memory. The
538 detailed characteristics of our platform file are shown in the
539 table~(\ref{table:platform}).
540 \AG{Are those characteristics realistic?}
541  Each node in the cluster has 18 frequency values
542 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
543 frequencies.
544 \begin{table}[htb]
545   \caption{Platform File Parameters}
546   % title of Table
547   \centering
548   \begin{tabular}{|*{7}{l|}}
549     \hline
550     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
551     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
552     \np{2.5} & \np{800} & \np[GBps]{2.25} &\np[$\mu$s]{0.5}& \np[GBps]{1} & \np[$\mu$s]{50} &Full  \\
553     GHz& MHz&  & & &  &Duplex  \\\hline
554   \end{tabular}
555   \label{table:platform}
556 \end{table}
557 Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
558 the NAS MPI programs while assuming the power dynamic is equal to \np[W]{20} and
559 the power static is equal to \np[W]{4} for all experiments.
560 \AG{How did you choose those values (available frequencies, power consumption)?}
561  We run the proposed EPSA
562 algorithm for all these programs. The results showed that the algorithm selected
563 different scaling factors for each program depending on the communication
564 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
565 there are different distances between the normalized energy and the normalized
566 inversed performance curves, because there are different communication features
567 for each MPI program.  When there are little or not communications, the inversed
568 performance curve is very close to the energy curve. Then the distance between
569 the two curves is very small. This leads to small energy savings. The opposite
570 happens when there are a lot of communication, theto finish distance between the two
571 curves is big.  This leads to more energy savings (e.g. CG and FT), see
572 table~(\ref{table:factors results}). All discovered frequency scaling factors
573 optimize both the energy and the performance simultaneously for all the NAS
574 programs. In table~(\ref{table:factors results}), we record all optimal scaling
575 factors results for each program on class C. These factors give the maximum
576 energy saving percent and the minimum performance degradation percent in the
577 same time over all available scales.
578 \begin{figure*}[t]
579   \centering
580   \includegraphics[width=.33\textwidth]{ep.eps}\hfill%
581   \includegraphics[width=.33\textwidth]{cg.eps}\hfill%
582   \includegraphics[width=.33\textwidth]{sp.eps}
583   \includegraphics[width=.33\textwidth]{lu.eps}\hfill%
584   \includegraphics[width=.33\textwidth]{bt.eps}\hfill%
585   \includegraphics[width=.33\textwidth]{ft.eps}
586   \caption{Optimal scaling factors for The NAS MPI Programs}
587   \label{fig:nas}
588 \end{figure*}
589 \begin{table}[htb]
590   \caption{The EPSA Scaling Factors Results}
591   % title of Table
592   \centering
593   \begin{tabular}{|l|*{4}{r|}}
594     \hline
595     Program & Optimal & Energy  & Performance&Energy-Perf.\\
596     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
597     CG & 1.56 &39.23&14.88 &24.35\\ \hline
598     MG & 1.47 &34.97&21.70 &13.27 \\ \hline
599     EP & 1.04 &22.14&20.73 &1.41\\ \hline
600     LU & 1.38 &35.83&22.49 &13.34\\ \hline
601     BT & 1.31 &29.60&21.28 &8.32\\ \hline
602     SP & 1.38 &33.48&21.36 &12.12\\ \hline
603     FT & 1.47 &34.72&19.00 &15.72\\ \hline
604   \end{tabular} 
605   \label{table:factors results}
606   % is used to refer this table in the text
607 \end{table}
608
609 As shown in the table~(\ref{table:factors results}), when the optimal scaling
610 factor has big value we can gain more energy savings for example as in CG and
611 FT. The opposite happens when the optimal scaling factor is small value as
612 example BT and EP. Our algorithm selects big scaling factor value when the
613 communication and the other slacks times are big and smaller ones in opposite
614 cases. In EP there are no communications inside the iterations. This make our
615 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
616
617 \section{Comparing Results}
618 \label{sec.compare}
619
620 In this section, we compare our EPSA algorithm results with Rauber and Rünger
621 methods~\cite{3}. They had two scenarios, the first is to reduce energy to
622 optimal level without considering the performance as in EQ~(\ref{eq:sopt}). We
623 refer to this scenario as $R_{E}$. The second scenario is similar to the first
624 except setting the slower task to the maximum frequency (when the scale $S=1$)
625 to keep the performance from degradation as mush as possible. We refer to this
626 scenario as $R_{E-P}$. The comparison is made in tables~(\ref{table:compare
627   Class A},\ref{table:compare Class B},\ref{table:compare Class C}). These
628 tables show the results of our EPSA and Rauber and Rünger scenarios for all the
629 NAS benchmarks programs for classes A,B and C.
630 \begin{table}[p]
631   \caption{Comparing Results for  The NAS Class A}
632   % title of Table
633   \centering
634   \begin{tabular}{|l|l|*{4}{r|}}
635     \hline
636     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
637     Name &Name&Value& Saving \%&Degradation \% &Distance
638     \\ \hline
639     % \rowcolor[gray]{0.85}
640     $EPSA$&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
641     $R_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.50\\ \hline
642     $R_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
643
644     $EPSA$&MG & 1.47 &27.66&16.82&10.84\\ \hline
645     $R_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
646     $R_{E}$&MG &2.14&34.48&33.65&0.80 \\ \hline
647
648     $EPSA$&EP &1.19 &25.32&20.79&4.53\\ \hline
649     $R_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
650     $R_{E}$&EP&2.05&42.09&57.59&-15.50\\ \hline
651
652     $EPSA$&LU&1.56& 39.55 &19.38& 20.17\\ \hline
653     $R_{E-P}$&LU&2.14&45.62&27.00&18.62 \\ \hline
654     $R_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
655
656     $EPSA$&BT&1.31& 29.60&20.53&9.07 \\ \hline
657     $R_{E-P}$&BT&2.10&45.53&49.63&-4.10\\ \hline
658     $R_{E}$&BT&2.10&43.93&52.86&-8.93\\ \hline
659
660     $EPSA$&SP&1.38& 33.51&15.65&17.86 \\ \hline
661     $R_{E-P}$&SP&2.11&45.62&42.52&3.10\\ \hline
662     $R_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
663
664     $EPSA$&FT&1.25&25.00&10.80&14.20 \\ \hline
665     $R_{E-P}$&FT&2.10&39.29&34.30&4.99 \\ \hline
666     $R_{E}$&FT&2.10&37.56&38.21&-0.65\\ \hline
667   \end{tabular}
668   \label{table:compare Class A}
669   % is used to refer this table in the text
670 \end{table}
671 \begin{table}[p]
672   \caption{Comparing Results for The NAS Class B}
673   % title of Table
674   \centering
675   \begin{tabular}{|l|l|*{4}{r|}}
676     \hline
677     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
678     Name &Name&Value& Saving \%&Degradation \% &Distance
679     \\ \hline
680     % \rowcolor[gray]{0.85}
681     $EPSA$&CG & 1.66 &39.23&16.63&22.60   \\ \hline
682     $R_{E-P}$&CG &2.15 &45.34&27.60&17.74\\ \hline
683     $R_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
684
685     $EPSA$ &MG & 1.47 &34.98&18.35&16.63\\ \hline
686     $R_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
687     $R_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
688
689     $EPSA$&EP &1.08 &20.29&17.15&3.14 \\ \hline
690     $R_{E-P}$&EP&2.00&42.38&56.88&-14.50\\ \hline
691     $R_{E}$&EP&2.00&39.73&59.94&-20.21\\ \hline
692
693     $EPSA$&LU&1.47&38.57&21.34&17.23 \\ \hline
694     $R_{E-P}$&LU&2.10&43.62&36.51&7.11 \\ \hline
695     $R_{E}$&LU&2.10&43.61&38.54&5.07 \\ \hline
696
697     $EPSA$&BT&1.31& 29.59&20.88&8.71\\ \hline
698     $R_{E-P}$&BT&2.10&44.53&53.05&-8.52\\ \hline
699     $R_{E}$&BT&2.10&42.93&52.80&-9.87\\ \hline
700
701     $EPSA$&SP&1.38&33.44&19.24&14.20 \\ \hline
702     $R_{E-P}$&SP&2.15&45.69&43.20&2.49\\ \hline
703     $R_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
704
705     $EPSA$&FT&1.38&34.40&14.57&19.83 \\ \hline
706     $R_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
707     $R_{E}$&FT&2.13&43.04&37.90&5.14\\ \hline
708   \end{tabular}
709   \label{table:compare Class B}
710   % is used to refer this table in the text
711 \end{table}
712
713 \begin{table}[p]
714   \caption{Comparing Results for The NAS Class C}
715   % title of Table
716   \centering
717   \begin{tabular}{|l|l|*{4}{r|}}
718     \hline
719     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
720     Name &Name&Value& Saving \%&Degradation \% &Distance
721     \\ \hline
722     % \rowcolor[gray]{0.85}
723     $EPSA$&CG & 1.56 &39.23&14.88&24.35  \\ \hline
724     $R_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
725     $R_{E}$&CG &2.15 &45.36&26.70&18.66\\ \hline
726
727     $EPSA$&MG & 1.47 &34.97&21.69&13.27\\ \hline
728     $R_{E-P}$&MG &2.15&43.65&40.45&3.20 \\ \hline
729     $R_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
730
731     $EPSA$&EP &1.04 &22.14&20.73&1.41 \\ \hline
732     $R_{E-P}$&EP&1.92&39.40&56.33&-16.93\\ \hline
733     $R_{E}$&EP&1.92&38.10&56.35&-18.25\\ \hline
734
735     $EPSA$&LU&1.38&35.83&22.49&13.34 \\ \hline
736     $R_{E-P}$&LU&2.15&44.97&41.00&3.97 \\ \hline
737     $R_{E}$&LU&2.15&44.97&41.80&3.17 \\ \hline
738
739     $EPSA$&BT&1.31& 29.60&21.28&8.32\\ \hline
740     $R_{E-P}$&BT&2.13&45.60&49.84&-4.24\\ \hline
741     $R_{E}$&BT&2.13&44.90&55.16&-10.26\\ \hline
742
743     $EPSA$&SP&1.38&33.48&21.35&12.12\\ \hline
744     $R_{E-P}$&SP&2.10&45.69&43.60&2.09\\ \hline
745     $R_{E}$&SP&2.10&45.75&44.10&1.65\\ \hline
746
747     $EPSA$&FT&1.47&34.72&19.00&15.72 \\ \hline
748     $R_{E-P}$&FT&2.04&39.40&37.10&2.30\\ \hline
749     $R_{E}$&FT&2.04&39.35&37.70&1.65\\ \hline
750   \end{tabular}
751 \label{table:compare Class C}
752 % is used to refer this table in the text
753 \end{table}
754 As shown in these tables our scaling factor is not optimal for energy saving
755 such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
756 the energy and the performance simultaneously. Our $EPSA$ optimal scaling factors
757 has better simultaneous optimization for both the energy and the performance
758 compared to Rauber and Rünger energy-performance method ($R_{E-P}$). Also, in
759 ($R_{E-P}$) method when setting the frequency to maximum value for the
760 slower task lead to a small improvement of the performance. Also the results
761 show that this method keep or improve energy saving. Because of the energy
762 consumption decrease when the execution time decreased while the frequency value
763 increased.
764
765 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
766 percent and the performance degradation percent. Therefore, this means it is the
767 same resultant of our objective function EQ~(\ref{eq:max}). Our algorithm always
768 gives positive energy to performance trade offs while Rauber and Rünger method
769 ($R_{E-P}$) gives in some time negative trade offs such as in BT and
770 EP. The positive trade offs with highest values lead to maximum energy savings
771 concatenating with less performance degradation and this the objective of this
772 paper. While the negative trade offs refers to improving energy saving (or may
773 be the performance) while degrading the performance (or may be the energy) more
774 than the first.
775 \begin{figure}[t]
776   \centering
777   \includegraphics[width=.33\textwidth]{compare_class_A.pdf}
778   \includegraphics[width=.33\textwidth]{compare_class_B.pdf}
779   \includegraphics[width=.33\textwidth]{compare_class_c.pdf}
780   \caption{Comparing Our EPSA with Rauber and Rünger Methods}
781   \label{fig:compare}
782 \end{figure}
783 \section{Conclusion}
784 \label{sec.concl}
785 In this paper we develop the simultaneous energy-performance algorithm. It is works based on the trade off relation between the energy and performance. The results showed that when the scaling factor is big value leads to more energy saving. Also, it show that when the the scaling factor is small value leads to the fact that the scaling factor has bigger impact on performance than energy. Then the algorithm optimize the energy saving and performance in the same time to have positive trade off. The optimal trade off refer to maximum distance between the energy and the inversed performance curves. Also, the results explained when setting the slowest task to maximum frequency usually not have a big improvement on performance. 
786 \AG{Needs to be better written.  Add some future works.}
787
788 \section*{Acknowledgment}
789
790 \AG{Right?}
791 Computations have been performed on the supercomputer facilities of the
792 Mésocentre de calcul de Franche-Comté.
793 As a PhD student, M. Ahmed Fanfakh, would like to thank the University of
794 Babylon (Iraq) for supporting his scholarship program that allows him to work on
795 this paper.
796 \AG{What about simply: ``[...] for supporting his work.''}
797
798 % trigger a \newpage just before the given reference
799 % number - used to balance the columns on the last page
800 % adjust value as needed - may need to be readjusted if
801 % the document is modified later
802 %\IEEEtriggeratref{15}
803
804 \bibliographystyle{IEEEtran}
805 \bibliography{IEEEabrv,my_reference}
806 \end{document}
807
808 %%% Local Variables:
809 %%% mode: latex
810 %%% TeX-master: t
811 %%% fill-column: 80
812 %%% ispell-local-dictionary: "american"
813 %%% End:
814
815 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
816 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger