]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Add todonotes, and update .gitignore.
[mpi-energy.git] / paper.tex
1 \documentclass[12pt]{article}
2 %\documentclass[12pt,twocolumn]{article}
3
4 \usepackage[T1]{fontenc}
5 \usepackage[utf8]{inputenc}
6 \usepackage[english]{babel}
7 \usepackage{algorithm,algorithmicx,algpseudocode}
8 \usepackage{graphicx,graphics}
9 \usepackage{subfig}
10 \usepackage{listings}
11 \usepackage{colortbl}
12 % \usepackage{sectsty}
13 % \usepackage{titlesec}
14 % \usepackage{secdot}
15 %\usepackage[font={footnotesize,bt}]{caption}
16 %\usepackage[font=scriptsize,labelfont=bf]{caption}
17 \usepackage{lmodern}
18
19 \usepackage{todonotes}
20 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\small\textbf{AG:} #2}}
21
22 \begin{document}
23
24 \title{Optimal Dynamic Frequency Scaling for Energy-Performance of Parallel MPI Programs}
25 \author{A. Badri \and J.-C. Charr \and R. Couturier \and A. Giersch}
26 \maketitle
27
28 \section{Introduction}
29
30 The need for computing power is still increasing and it is not expected to slow
31 down in the coming years. To satisfy this demand, researchers and supercomputers
32 constructors have been regularly increasing the number of computing cores in
33 supercomputers (for example in November 2013, according to the top 500
34 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
35 millions of cores and delivers more than 33 Tflop/s while consuming 17808
36 kW). This large increase in number of computing cores has led to large energy
37 consumption by these architectures. Moreover, the price of energy is expected to
38 continue its ascent according to the demand. For all these reasons energy
39 reduction became an important topic in the high performance computing field. To
40 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
41 Scaling) operations which reduce dynamically the frequency and voltage of cores
42 and thus their energy consumption. However, this operation also degrades the
43 performance of computation. Therefore researchers try to reduce the frequency to
44 minimum when processors are idle (waiting for data from other processors or
45 communicating with other processors). Moreover, depending on their objectives
46 they use heuristics to find the best scaling factor during the computation. If
47 they aim for performance they choose the best scaling factor that reduces the
48 consumed energy while affecting as little as possible the performance. On the
49 other hand, if they aim for energy reduction, the chosen scaling factor must
50 produce the most energy efficient execution without considering the degradation
51 of the performance. It is important to notice that lowering the frequency to
52 minimum value does not always give the most efficient execution due to energy
53 leakage. The best scaling factor might be chosen during execution (online) or
54 during a pre-execution phase.  In this paper we emphasize to develop an
55 algorithm that selects the optimal frequency scaling factor that takes into
56 consideration simultaneously the energy consumption and the performance. The
57 main objective of HPC systems is to run the application with less execution
58 time. Therefore, our algorithm selects the optimal scaling factor online with
59 very small footprint. The proposed algorithm takes into account the
60 communication times of the MPI programs to choose the scaling factor. This
61 algorithm has ability to predict both energy consumption and execution time over
62 all available scaling factors.  The prediction achieved depends on some
63 computing time information, gathered at the beginning of the runtime.  We apply
64 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
65 penchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
66 using the simulator Simgrid/SMPI v3.10~\cite{45} over an homogeneous distributed
67 memory architecture. Furthermore, we compare the proposed algorithm with
68 Rauber's methods. The comparison's results show that our algorithm gives better
69 energy-time trade off.
70
71 \section{Related Works}
72
73 In the this section some heuristics, to compute the scaling factor, are
74 presented and classified in two parts : offline and online methods.
75
76 \subsection{The offline DVFS orientations}
77
78 The DVFS offline methods are static and are not executed during the runtime of
79 the program. Some approaches used heuristics to select the best DVFS state
80 during the compilation phases as an example in Azevedo et al.~\cite{40}. He used
81 intra-task algorithm to choose the DVFS setting when there are dependency points
82 between tasks. While in~\cite{29}, Xie et al. used breadth-first search
83 algorithm to do that. Their goal is saving energy with time limits. Another
84 approaches gathers and stores the runtime information for each DVFS state , then
85 used their methods offline to select the suitable DVFS that optimize energy-time
86 trade offs. As an example~\cite{8}, Rountree et al. used liner programming
87 algorithm, while in~\cite{38,34}, Cochran et al. used multi logistic regression
88 algorithm for the same goal. The offline study that shown the DVFS impact on the
89 communication time of the MPI program is~\cite{17}, Freeh et al. show that these
90 times not changed when the frequency is scaled down.
91
92 \subsection{The online DVFS orientations}
93
94 The objective of these works is to dynamically compute and set the frequency of
95 the CPU during the runtime of the program for saving energy. Estimating and
96 predicting approaches for the energy-time trade offs developed by
97 ~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
98 times. These times happen when the processors have to wait for data from other
99 processors to compute their task. For example, during the synchronous
100 communication time that take place in the MPI programs, the processors are
101 idle. The optimal DVFS can be selected using the learning methods. Therefore, in
102 ~\cite{39,19} used machine learning to converge to the suitable DVFS
103 configuration. Their learning algorithms have big time to converge when the
104 number of available frequencies is high. Also, the communication time of the MPI
105 program used online for saving energy as in~\cite{1}, Lim et al. developed an
106 algorithm that detects the communication sections and changes the frequency
107 during these sections only. This approach changes the frequency many times
108 because an iteration may contain more than one communication section. The domain
109 of analytical modeling used for choosing the optimal frequency as in ~\cite{3},
110 Rauber et al. developed an analytical mathematical model for determining the
111 optimal frequency scaling factor for any number of concurrent tasks, without
112 considering communication times. They set the slowest task to maximum frequency
113 for maintaining performance.  In this paper we compare our algorithm with
114 Rauber's model~\cite{3}, because his model can be used for any number of
115 concurrent tasks for homogeneous platform and this is the same direction of this
116 paper.  However, the primary contributions of this paper are:
117 \begin{enumerate}
118 \item Selecting the optimal frequency scaling factor for energy and performance
119   simultaneously. While taking into account the communication time.
120 \item Adapting our scale factor to taking into account the imbalanced tasks.
121 \item The execution time of our algorithm is very small when compared to other
122   methods (e.g.,~\cite{19}).
123 \item The proposed algorithm works online without profiling or training as
124   in~\cite{38,34}.
125 \end{enumerate}
126
127 \section{Parallel Tasks Execution on Homogeneous Platform}
128
129 A homogeneous cluster consists of identical nodes in terms of the hardware and
130 the software. Each node has its own memory and at least one processor which can
131 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
132 executed on this model can be either synchronous or asynchronous. In this paper
133 we consider execution of the synchronous tasks on distributed homogeneous
134 platform. These tasks can exchange the data via synchronous memory passing.
135 \begin{figure}[h]
136   \centering
137   \subfloat[Synch. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
138   \subfloat[Synch. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
139   \caption{Parallel Tasks on Homogeneous Platform}
140   \label{fig:homo}
141 \end{figure}
142 Therefore, the execution time of a task consists of the computation time and the
143 communication time. Moreover, the synchronous communications between tasks can
144 lead to idle time while tasks wait at the synchronous point for others tasks to
145 finish their communications see figure~(\ref{fig:h1}).  Another source for idle
146 times is the imbalanced computations. This happen when processing different
147 amounts of data on each processor as an example see figure~(\ref{fig:h2}). In
148 this case the fastest tasks have to wait at the synchronous barrier for the
149 slowest tasks to finish their job. In both two cases the overall execution time
150 of the program is the execution time of the slowest task as :
151 \begin{equation}  \label{eq:T1}
152   Program Time=MAX_{i=1,2,..,N} (T_i) \hfill
153 \end{equation}
154 where $T_i$ is the execution time of process $i$.
155
156 \section{Energy Model for Homogeneous Platform}
157
158 The energy consumption by the processor consists of two powers metric: the
159 dynamic and the static power. This general power formulation is used by many
160 researchers see ~\cite{9,3,15,26}. The dynamic power of the CMOS processors
161 $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
162 the supply voltage $V$ and operational frequency $f$ respectively as follow :
163 \begin{equation}  \label{eq:pd}
164   \displaystyle  P_{dyn} = \alpha . C_L . V^2 . f
165 \end{equation}
166 The static power $P_{static}$ captures the leakage power consumption as well as
167 the power consumption of peripheral devices like the I/O subsystem.
168 \begin{equation}  \label{eq:ps}
169   \displaystyle  P_{static}  = V . N . K_{design} . I_{leak}
170 \end{equation}
171 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
172 design dependent parameter and $I_{leak}$ is a technology-dependent
173 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
174 of the dynamic and the static power multiply by the execution time for example
175 see~\cite{36,15} .
176 \begin{equation}  \label{eq:eind}
177   \displaystyle  E_{ind} = (P_{dyn} + P_{static} ) . T
178 \end{equation}
179 The dynamic voltage and frequency scaling (DVFS) is a process that allowed in
180 modern processors to reduce the dynamic power by scaling down the voltage and
181 frequency. Its main objective is to reduce the overall energy
182 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
183 supply voltage $V$, i.e., $V = \beta . f$ with some constant $\beta$. This
184 equation is used to study the change of the dynamic voltage with respect to
185 various frequency values in~\cite{3}. The reduction process of the frequency are
186 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
187 maximum and the new frequency as in EQ~(\ref{eq:s}).
188 \begin{equation}  \label{eq:s}
189   S=\:\frac{F_{max}}{F_{new}} \hfill  \newline
190 \end{equation}
191 The value of the scale \emph S is grater than 1 when changing the frequency to
192 any new frequency value(\emph {P-state}) in governor. It is equal to 1 when the
193 frequency are set to the maximum frequency.  The energy consumption model for
194 parallel homogeneous platform is depending on the scaling factor \emph S. This
195 factor reduces quadratically the dynamic power.  Also, this factor increases the
196 static energy linearly because the execution time is increased~\cite{36}.  The
197 energy model, depending on the frequency scaling factor, of homogeneous platform
198 for any number of concurrent tasks develops by Rauber~\cite{3}. This model
199 consider the two powers metric for measuring the energy of the parallel tasks as
200 in EQ~(\ref{eq:energy}).
201
202 \begin{equation}  \label{eq:energy}
203   E= \displaystyle \;P_{dyn}\,.\,S_1^{-2}\;.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,.\,S_1\;\,.\,N
204  \hfill
205 \end{equation}
206 Where \emph N is the number of parallel nodes, $T_1 $ is the time of the slower
207 task, $T_i$ is the time of the task $i$ and $S_1$ is the maximum scaling factor
208 for the slower task. The scaling factor $S_1$, as in EQ~(\ref{eq:s1}), selects
209 from the set of scales values $S_i$. Each of these scales are proportional to
210 the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
211 \begin{equation}  \label{eq:s1}
212   S_1=MAX_{i=1,2,..,F} (S_i) \hfill
213 \end{equation}
214 \begin{equation}  \label{eq:si}
215   S_i=\:S\: .\:(\frac{T_1}{T_i})=\: (\frac{F_{max}}{F_{new}}).(\frac{T_1}{T_i}) \hfill
216 \end{equation}
217 Where $F$ is the number of available frequencies. In this paper we depend on
218 Rauber's energy model EQ~(\ref{eq:energy}) for two reasons : 1-this model used
219 for homogeneous platform that we work on in this paper. 2-we are compare our
220 algorithm with Rauber's scaling model.  Rauber's optimal scaling factor for
221 optimal energy reduction derived from the EQ~(\ref{eq:energy}). He takes the
222 derivation for this equation (to be minimized) and set it to zero to produce the
223 scaling factor as in EQ~(\ref{eq:sopt}).
224 \begin{equation}  \label{eq:sopt}
225   S_{opt}= {\sqrt [3~]{\frac{2}{n} \frac{P_{dyn}}{P_{static}}  \Big(1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^3}\Big) }} \hfill
226 \end{equation}
227 %[\Big 3]
228
229 \section{Performance Evaluation of MPI Programs}
230
231 The performance (execution time) of the parallel MPI applications are depends on
232 the time of the slowest task as in figure~(\ref{fig:homo}). Normally the
233 execution time of the parallel programs are proportional to the operational
234 frequency. Therefore, any DVFS operation for the energy reduction increase the
235 execution time of the parallel program. As shown in EQ~(\ref{eq:energy}) the
236 energy affected by the scaling factor $S$. This factor also has a great impact
237 on the performance. When scaling down the frequency to the new value according
238 to EQ(~\ref{eq:s}) lead to the value of the scale $S$ has inverse relation with
239 new frequency value ($S \propto \frac{1}{F_{new}}$). Also when decrease the
240 frequency value, the execution time increase. Then the new frequency value has
241 inverse relation with time ($F_{new} \propto \frac{1}{T}$). This lead to the
242 frequency scaling factor $S$ proportional linearly with execution time ($S
243 \propto T$). Large scale MPI applications such as NAS benchmarks have
244 considerable amount of communications embedded in these programs. During the
245 communication process the processor remain idle until the communication has
246 finished. For that reason any change in the frequency has no impact on the time
247 of communication but it has obvious impact on the time of
248 computation~\cite{17}. We are made many tests on real cluster to prove that the
249 frequency scaling factor \emph S has a linear relation with computation time
250 only also see~\cite{41}. To predict the execution time of MPI program, firstly
251 must be precisely specifying communication time and the computation time for the
252 slower task. Secondly, we use these times for predicting the execution time for
253 any MPI program as a function of the new scaling factor as in the
254 EQ~(\ref{eq:tnew}).
255 \begin{equation}  \label{eq:tnew}
256   \displaystyle T_{new}= T_{Max \:Comp \:Old} \; . \:S \;+ \;T_{Max\: Comm\: Old}
257   \hfill
258 \end{equation}
259 The above equation shows that the scaling factor \emph S has linear relation
260 with the computation time without affecting the communication time. The
261 communication time consists of the beginning times which an MPI calls for
262 sending or receiving till the message is synchronously sent or received. In this
263 paper we predict the execution time of the program for any new scaling factor
264 value. Depending on this prediction we can produce our energy-performace scaling
265 method as we will show in the coming sections. In the next section we make an
266 investigation study for the EQ~(\ref{eq:tnew}).
267
268 \section{Performance Prediction Verification}
269
270 In this section we evaluate the precision of our performance prediction methods
271 on the NAS benchmark. We use the EQ~(\ref{eq:tnew}) that predicts the execution
272 time for any scale value. The NAS programs run the class B for comparing the
273 real execution time with the predicted execution time. Each program runs offline
274 with all available scaling factors on 8 or 9 nodes to produce real execution
275 time values. These scaling factors are computed by dividing the maximum
276 frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
277 Simgrid/SMPI v3.10 to run the NAS programs.
278 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
279   \centering
280   \includegraphics[scale=0.60]{cg_per.eps}
281   \includegraphics[scale=0.60]{mg_pre.eps}
282   \includegraphics[scale=0.60]{bt_pre.eps}
283   \includegraphics[scale=0.60]{lu_pre.eps}
284   \caption{Fitting Predicted to Real Execution Time}
285   \label{fig:pred}
286 \end{figure}
287 %see Figure~\ref{fig:pred}
288 In our cluster there are 18 available frequency states for each processor from
289 2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
290 frequencies. For more details on the characteristics of the platform refer to
291 table~(\ref{table:platform}). This lead to 18 run states for each program. We
292 use seven MPI programs of the NAS parallel benchmarks : CG, MG, EP, FT, BT, LU
293 and SP. The average normalized errors between the predicted execution time and
294 the real time (Simgrid time) for all programs is between 0.0032 to 0.0133. AS an
295 example, we are present the execution times of the NAS benchmarks as in the
296 figure~(\ref{fig:pred}).
297
298 \section{Performance to Energy Competition}
299 This section demonstrates our approach for choosing the optimal scaling
300 factor. This factor gives maximum energy reduction taking into account the
301 execution time for both computation and communication times . The relation
302 between the energy and the performance are nonlinear and complex, because the
303 relation of the energy with scaling factor is nonlinear and with the performance
304 it is linear see~\cite{17}. The relation between the energy and the performance
305 is not straightforward. Moreover, they are not measured using the same metric.
306 For solving this problem, we normalize the energy by calculating the ratio
307 between the consumed energy with scaled frequency and the consumed energy
308 without scaled frequency :
309 \begin{equation}  \label{eq:enorm}
310   E_{Norm}=\displaystyle\frac{E_{Reduced}}{E_{Orginal}}= \frac{\displaystyle \;P_{dyn}\,.\,S_i^{-2}\,.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,.\,S_i\;\,.\,N  }{\displaystyle \;P_{dyn}\,.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,\,.\,N   }
311 \end{equation}
312 By the same way we can normalize the performance as follows :
313 \begin{equation}  \label{eq:pnorm}
314   P_{Norm}=\displaystyle \frac{T_{New}}{T_{Old}}=\frac{T_{Max \:Comp \:Old} \;. \:S \;+ \;T_{Max\: Comm\: Old}}{T_{Old}}    \;\;
315 \end{equation}
316 The second problem is the optimization operation for both energy and performance
317 is not in the same direction. In other words, the normalized energy and the
318 performance curves are not in the same direction see figure~(\ref{fig:r2}).
319 While the main goal is to optimize the energy and performance in the same
320 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
321 scaling factor \emph S reduce both the energy and the performance
322 simultaneously. But the main objective is to produce maximum energy reduction
323 with minimum performance reduction. Many researchers used different strategies
324 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
325 big overhead to the algorithm for selecting the suitable frequency. In this
326 paper we are present a method to find the optimal scaling factor \emph S for
327 optimize both energy and performance simultaneously without adding big
328 overheads.  Our solution for this problem is to make the optimization process
329 have the same direction. Therefore, we inverse the equation of normalize
330 performance as follows :
331 \begin{equation}  \label{eq:pnorm_en}
332   \displaystyle P^{-1}_{Norm}= \frac{T_{Old}}{T_{New}}=\frac{T_{Old}}{T_{Max \:Comp \:Old} \;. \:S \;+ \;T_{Max\: Comm\: Old}}
333 \end{equation}
334 \begin{figure}
335   \centering
336   \subfloat[Converted Relation.]{\includegraphics[scale=0.70]{file.eps}\label{fig:r1}}
337   \subfloat[Real Relation.]{\includegraphics[scale=0.70]{file3.eps}\label{fig:r2}}
338   \label{fig:rel}
339   \caption{The Energy and Performance Relation}
340 \end{figure}
341 Then, we can modelize our objective function as finding the maximum distance
342 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
343 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
344 the minimum energy consumption with minimum execution time (better performance)
345 in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
346 following form:
347 \begin{equation}  \label{eq:max}
348   \displaystyle MaxDist = Max \;(\;\overbrace{P^{-1}_{Norm}}^{Maximize}\; -\; \overbrace{E_{Norm}}^{Minimize} \;)
349 \end{equation}
350 Then we can select the optimal scaling factor that satisfy the
351 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
352 static power values stored in a data file. Moreover, this function works in
353 optimal way when the energy function has a convex form with frequency scaling
354 factor as shown in ~\cite{15,3,19}. Energy measurement model is not the
355 objective of this paper and we choose Rauber's model as an example with two
356 reasons that mentioned before.
357
358 \section{Optimal Scaling Factor for Performance and Energy}
359
360 In the previous section we described the objective function that satisfy our
361 goal in discovering optimal scaling factor for both performance and energy at
362 the same time. Therefore, we develop an energy to performance scaling algorithm
363 (EPSA). This algorithm is simple and has a direct way to calculate the optimal
364 scaling factor for both energy and performance at the same time.
365 \begin{algorithm}[t]
366   \caption{EPSA}
367   \label{EPSA}
368   \begin{algorithmic}[1]
369     \State  Initialize the variable $Dist=0$
370     \State Set dynamic and static power values.
371     \State Set $P_{states}$ to the number of available frequencies.
372     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
373     \State Set the variable $F_{diff}$ to the scale value between each two frequencies.
374     \For {$i=1$   to   $P_{states} $}
375       \State - Calculate the new frequency as $F_{new}=F_{new} - F_{diff} $
376       \State - Calculate the scale factor $S$ as in EQ~(\ref{eq:s}).
377       \State - Calculate all available scales $S_i$  depend on $S$ as in EQ~(\ref{eq:si}).
378       \State - Select the maximum scale factor $S_1$ from the set of scales $S_i$.
379       \State - Calculate the normalize energy $E_{Norm}=E_{R}/E_{O}$ as in EQ~(\ref{eq:enorm}).
380       \State - Calculate the normalize inverse of performance $P_{NormInv}=T_{old}/T_{new}$
381
382       as in EQ~(\ref{eq:pnorm_en}).
383       \If{  $(P_{NormInv}-E_{Norm}$ $>$ $Dist$) }
384         \State $S_{optimal}=S$
385         \State $Dist = P_{NormInv} - E_{Norm}$
386       \EndIf
387     \EndFor
388     \State  $ Return \; \;  (S_{optimal})$
389   \end{algorithmic}
390 \end{algorithm}
391 The proposed EPSA algorithm works online during the execution time of the MPI
392 program. It selects the optimal scaling factor by gathering some information
393 from the program after one iteration. This algorithm has small execution time
394 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The data
395 required by this algorithm is the computation time and the communication time
396 for each task from the first iteration only. When these times are measured, the
397 MPI program calls the EPSA algorithm to choose the new frequency using the
398 optimal scaling factor. Then the program set the new frequency to the
399 system. The algorithm is called just one time during the execution of the
400 program. The following example shows where and when the EPSA algorithm is called
401 in the MPI program :
402 \begin{minipage}{\textwidth}
403 \begin{lstlisting}[frame=tb]
404 FOR J:=1 to Some_iterations Do
405    -Computations Section.
406    -Communications Section.
407    IF (J==1) THEN
408      -Gather all times of computation and communication
409       from each node.
410      -Call EPSA with these times.
411      -Calculate the new frequency from optimal scale.
412      -Set the new frequency to the system.
413    ENDIF
414 ENDFOR
415 \end{lstlisting}
416 \end{minipage}
417 After obtaining the optimal scale factor from the EPSA algorithm. The program
418 calculates the new frequency $F_i$ for each task proportionally to its time
419 value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
420 can calculate the new frequency $F_i$ as follows :
421 \begin{equation}  \label{eq:fi}
422   F_i=\frac{F_{max} \; . \;T_i}{S_{optimal} \; . \;T_{max}} \hfill
423 \end{equation}
424 According to this equation all the nodes may have the same frequency value if
425 they have balanced workloads. Otherwise, they take different frequencies when
426 have imbalanced workloads. Then EQ~(\ref{eq:fi}) works in adaptive way to change
427 the freguency according to the nodes workloads.
428
429 \section{Experimental Results}
430
431 The proposed ESPA algorithm was applied to seven MPI programs of the NAS
432 benchmarks (EP ,CG , MG ,FT , BT, LU and SP). We work on three classes (A, B and
433 C) for each program. Each program runs on specific number of processors
434 proportional to the size of the class.  Each class represents the problem size
435 ascending from the class A to C. Additionally, depending on some speed up points
436 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
437 respectively. Our experiments are executed on the simulator Simgrid/SMPI
438 v3.10. We design a platform file that simulates a cluster with one core per
439 node. This cluster is a homogeneous architecture with distributed memory. The
440 detailed characteristics of our platform file are shown in
441 thetable~(\ref{table:platform}). Each node in the cluster has 18 frequency
442 values from 2.5 GHz to 800 MHz with 100 MHz difference between each two
443 successive frequencies.
444 \begin{table}[ht]
445   \caption{Platform File Parameters}
446   % title of Table
447   \centering
448   \begin{tabular}{ | l | l | l |l | l |l |l |  p{2cm} |}
449     \hline
450     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
451     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
452     2.5 &800 & 2.25 GBps &5E-7 s & 1 GBps & 5E-5 s&Full  \\
453     GHz& MHz&  & & &  &Duplex  \\\hline
454   \end{tabular}
455   \label{table:platform}
456 \end{table}
457 Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
458 the NAS MPI programs while assuming the power dynamic is equal to 20W and the
459 power static is equal to 4W for all experiments. We run the proposed ESPA
460 algorithm for all these programs. The results showed that the algorithm selected
461 different scaling factors for each program depending on the communication
462 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
463 there are different distances between the normalized energy and the normalized
464 inversed performance curves, because there are different communication features
465 for each MPI program.  When there are little or not communications, the inversed
466 performance curve is very close to the energy curve. Then the distance between
467 the two curves is very small. This lead to small energy savings. The opposite
468 happens when there are a lot of communication, the distance between the two
469 curves is big.  This lead to more energy savings (e.g. CG and FT), see
470 table~(\ref{table:factors results}). All discovered frequency scaling factors
471 optimize both the energy and the performance simultaneously for all the NAS
472 programs. In table~(\ref{table:factors results}), we record all optimal scaling
473 factors results for each program on class C. These factors give the maximum
474 energy saving percent and the minimum performance degradation percent in the
475 same time over all available scales.
476 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
477   \centering
478   \includegraphics[scale=0.47]{ep.eps}
479   \includegraphics[scale=0.47]{cg.eps}
480   \includegraphics[scale=0.47]{sp.eps}
481   \includegraphics[scale=0.47]{lu.eps}
482   \includegraphics[scale=0.47]{bt.eps}
483   \includegraphics[scale=0.47]{ft.eps}
484   \caption{Optimal scaling factors for The NAS MPI Programs}
485   \label{fig:nas}
486 \end{figure}
487 \begin{table}[width=\textwidth,height=\textheight,keepaspectratio]
488   \caption{Optimal Scaling Factors Results}
489   % title of Table
490   \centering
491   \begin{tabular}{ | l | l | l |l | l | p{2cm} |}
492     \hline
493     Program & Optimal & Energy  & Performance&Energy-Perf.\\
494     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
495     CG & 1.56 &39.23 & 14.88 & 24.35\\ \hline
496     MG & 1.47 &34.97&21.7& 13.27   \\ \hline
497     EP & 1.04 &22.14&20.73 &1.41\\ \hline
498     LU & 1.388 &35.83&22.49 &13.34\\ \hline
499     BT & 1.315 &29.6&21.28 &8.32\\ \hline
500     SP & 1.388 &33.48 &21.36&12.12\\ \hline
501     FT & 1.47 &34.72 &19&15.72\\ \hline
502   \end{tabular}
503   \label{table:factors results}
504   % is used to refer this table in the text
505 \end{table}
506
507 As shown in the table~(\ref{table:factors results}), when the optimal scaling
508 factor has big value we can gain more energy savings for example as in CG and
509 FT. The opposite happens when the optimal scaling factor is small value as
510 example BT and EP. Our algorithm selects big scaling factor value when the
511 communication and the other slacks times are big and smaller ones in opposite
512 cases. In EP there are no communications inside the iterations. This make our
513 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
514
515 \section{Comparing Results}
516
517 In this section, we compare our EPSA algorithm results with Rauber's
518 methods~\cite{3}. He had two scenarios, the first is to reduce energy to optimal
519 level without considering the performance as in EQ~(\ref{eq:sopt}). We refer to
520 this scenario as $Rauber_{E}$. The second scenario is similar to the first
521 except setting the slower task to the maximum frequency (when the scale $S=1$)
522 to keep the performance from degradation as mush as possible. We refer to this
523 scenario as $Rauber_{E-P}$. The comparison is made in tables~(\ref{table:compare
524   Class A},\ref{table:compare Class B},\ref{table:compare Class C}). These
525 tables show the results of our EPSA and Rauber's two scenarios for all the NAS
526 benchmarks programs for classes A,B and C.
527 \begin{table}[ht]
528   \caption{Comparing Results for  The NAS Class A}
529   % title of Table
530   \centering
531   \begin{tabular}{ | l | l | l |l | l |l|  }
532     \hline
533     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
534     name &name&value& Saving \%&Degradation \% &Distance
535     \\ \hline
536     % \rowcolor[gray]{0.85}
537     EPSA&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
538     $Rauber_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.5\\ \hline
539     $Rauber_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
540
541     EPSA&MG & 1.47 &27.66&16.82&10.84\\ \hline
542     $Rauber_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
543     $Rauber_{E}$&MG &2.14&34.48&33.65&0.8 \\ \hline
544
545     EPSA&EP &1.19 &25.32&20.79&4.53\\ \hline
546     $Rauber_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
547     $Rauber_{E}$&EP&2.05&42.09&57.59&-15.5\\ \hline
548
549     EPSA&LU&1.56& 39.55 &19.38& 20.17\\ \hline
550     $Rauber_{E-P}$&LU&2.14&45.62&27&18.62 \\ \hline
551     $Rauber_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
552
553     EPSA&BT&1.315& 29.6&20.53&9.07 \\ \hline
554     $Rauber_{E-P}$&BT&2.1&45.53&49.63&-4.1\\ \hline
555     $Rauber_{E}$&BT&2.1&43.93&52.86&-8.93\\ \hline
556
557     EPSA&SP&1.388& 33.51&15.65&17.86 \\ \hline
558     $Rauber_{E-P}$&SP&2.11&45.62&42.52&3.1\\ \hline
559     $Rauber_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
560
561     EPSA&FT&1.25& 25&10.8&14.2 \\ \hline
562     $Rauber_{E-P}$&FT&2.1&39.29&34.3&4.99 \\ \hline
563     $Rauber_{E}$&FT&2.1&37.56&38.21&-0.65\\ \hline
564   \end{tabular}
565   \label{table:compare Class A}
566   % is used to refer this table in the text
567 \end{table}
568 \begin{table}[ht]
569   \caption{Comparing Results for The NAS Class B}
570   % title of Table
571   \centering
572   \begin{tabular}{ | l | l | l |l | l |l|  }
573     \hline
574     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
575     name &name&value& Saving \%&Degradation \% &Distance
576     \\ \hline
577     % \rowcolor[gray]{0.85}
578     EPSA&CG & 1.66 &39.23&16.63&22.6   \\ \hline
579     $Rauber_{E-P}$&CG &2.15 &45.34&27.6&17.74\\ \hline
580     $Rauber_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
581
582     EPSA&MG & 1.47 &34.98&18.35&16.63\\ \hline
583     $Rauber_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
584     $Rauber_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
585
586     EPSA&EP &1.08 &20.29&17.15&3.14 \\ \hline
587     $Rauber_{E-P}$&EP&2&42.38&56.88&-14.5\\ \hline
588     $Rauber_{E}$&EP&2&39.73&59.94&-20.21\\ \hline
589
590     EPSA&LU&1.47&38.57&21.34&17.23 \\ \hline
591     $Rauber_{E-P}$&LU&2.1&43.62&36.51&7.11 \\ \hline
592     $Rauber_{E}$&LU&2.1&43.61&38.54&5.07 \\ \hline
593
594     EPSA&BT&1.315& 29.59&20.88&8.71\\ \hline
595     $Rauber_{E-P}$&BT&2.1&44.53&53.05&-8.52\\ \hline
596     $Rauber_{E}$&BT&2.1&42.93&52.806&-9.876\\ \hline
597
598     EPSA&SP&1.388&33.44&19.24&14.2 \\ \hline
599     $Rauber_{E-P}$&SP&2.15&45.69&43.2&2.49\\ \hline
600     $Rauber_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
601
602     EPSA&FT&1.388&34.4&14.57&19.83 \\ \hline
603     $Rauber_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
604     $Rauber_{E}$&FT&2.13&43.04&37.9&5.14\\ \hline
605   \end{tabular}
606   \label{table:compare Class B}
607   % is used to refer this table in the text
608 \end{table}
609
610 \begin{table}[ht]
611   \caption{Comparing Results for The NAS Class C}
612   % title of Table
613   \centering
614   \begin{tabular}{ | l | l | l |l | l |l|  }
615     \hline
616     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
617     name &name&value& Saving \%&Degradation \% &Distance
618     \\ \hline
619     % \rowcolor[gray]{0.85}
620     EPSA&CG & 1.56 &39.23&14.88&24.35  \\ \hline
621     $Rauber_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
622     $Rauber_{E}$&CG &2.15 &45.36&26.7&18.66\\ \hline
623
624     EPSA&MG & 1.47 &34.97&21.697&13.273\\ \hline
625     $Rauber_{E-P}$&MG &2.15&43.65&40.45&3.2 \\ \hline
626     $Rauber_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
627
628     EPSA&EP &1.04 &22.14&20.73&1.41 \\ \hline
629     $Rauber_{E-P}$&EP&1.92&39.4&56.33&-16.93\\ \hline
630     $Rauber_{E}$&EP&1.92&38.1&56.35&-18.25\\ \hline
631
632     EPSA&LU&1.388&35.83&22.49&13.34 \\ \hline
633     $Rauber_{E-P}$&LU&2.15&44.97&41&3.97 \\ \hline
634     $Rauber_{E}$&LU&2.15&44.97&41.8&3.17 \\ \hline
635
636     EPSA&BT&1.315& 29.6&21.28&8.32\\ \hline
637     $Rauber_{E-P}$&BT&2.13&45.6&49.84&-4.24\\ \hline
638     $Rauber_{E}$&BT&2.13&44.9&55.16&-10.26\\ \hline
639
640     EPSA&SP&1.388&33.48&21.35&12.12\\ \hline
641     $Rauber_{E-P}$&SP&2.1&45.69&43.6&2.09\\ \hline
642     $Rauber_{E}$&SP&2.1&45.75&44.1&1.65\\ \hline
643
644     EPSA&FT&1.47&34.72&19&15.72 \\ \hline
645     $Rauber_{E-P}$&FT&2.04&39.4&37.1&2.3\\ \hline
646     $Rauber_{E}$&FT&2.04&39.35&37.7&1.65\\ \hline
647   \end{tabular}
648 \label{table:compare Class C}
649 % is used to refer this table in the text
650 \end{table}
651 As shown in these tables our scaling factor is not optimal for energy saving
652 such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
653 the energy and the performance simultaneously. Our EPSA optimal scaling factors
654 has better simultaneous optimization for both the energy and the performance
655 compared to Rauber's energy-performance method ($Rauber_{E-P}$). Also, in
656 ($Rauber_{E-P}$) method when setting the frequency to maximum value for the
657 slower task lead to a small improvement of the performance. Also the results
658 show that this method keep or improve energy saving. Because of the energy
659 consumption decrease when the execution time decreased while the frequency value
660 increased.
661
662 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
663 percent and the performance degradation percent. Therefore, this means it is the
664 same resultant of our objective function EQ~(\ref{eq:max}). Our algorithm always
665 gives positive energy to performance trade offs while Rauber's method
666 ($Rauber_{E-P}$) gives in some time negative trade offs such as in BT and
667 EP. The positive trade offs with highest values lead to maximum energy savings
668 concatenating with less performance degradation and this the objective of this
669 paper. While the negative trade offs refers to improving energy saving (or may
670 be the performance) while degrading the performance (or may be the energy) more
671 than the first.
672 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
673   \centering
674   \includegraphics[scale=0.60]{compare_class_A.pdf}
675   \includegraphics[scale=0.60]{compare_class_B.pdf}
676   \includegraphics[scale=0.60]{compare_class_c.pdf}
677   % use scale 35 for all to be in the same line
678   \caption{Comparing Our EPSA with Rauber's Methods}
679   \label{fig:compare}
680 \end{figure}
681
682 \bibliographystyle{plain}
683 \bibliography{my_reference}
684 \end{document}
685
686 %%% Local Variables:
687 %%% mode: latex
688 %%% TeX-master: t
689 %%% fill-column: 80
690 %%% ispell-local-dictionary: "american"
691 %%% End: