]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
949c10ca07224683d85186f5f19c9c820da0af5d
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{amsmath}
10
11 \usepackage{url}
12 \DeclareUrlCommand\email{\urlstyle{same}}
13
14 \usepackage[autolanguage,np]{numprint}
15 \AtBeginDocument{%
16   \renewcommand*\npunitcommand[1]{\text{#1}}
17   \npthousandthpartsep{}}
18
19 \usepackage{xspace}
20 \usepackage[textsize=footnotesize]{todonotes}
21 \newcommand{\AG}[2][inline]{%
22   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
23 \newcommand{\JC}[2][inline]{%
24   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \begin{document}
27
28 \title{Dynamic Frequency Scaling for Energy Consumption
29   Reduction in Synchronous Distributed Applications}
30
31 \author{%
32   \IEEEauthorblockN{%
33     Jean-Claude Charr,
34     Raphaël Couturier,
35     Ahmed Fanfakh and
36     Arnaud Giersch
37   }
38   \IEEEauthorblockA{%
39     FEMTO-ST Institute\\
40     University of Franche-Comté\\
41     IUT de Belfort-Montbéliard,
42     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
43     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
44     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
45     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
46    }
47   }
48
49 \maketitle
50
51 \begin{abstract}
52   Dynamic Voltage Frequency Scaling (DVFS) can be applied to modern CPUs.  This
53   technique is usually used to reduce the energy consumed by a CPU while
54   computing.  Thus, decreasing the frequency
55   reduces the power consumed by the CPU.  However, it can also significantly
56   affect the performance of the executed program if it is compute bound and if a
57   low CPU frequency is selected.  Therefore, the chosen scaling factor must
58   give the best possible trade-off between energy reduction and performance.
59
60   In this paper we present an algorithm that predicts the energy consumed with
61   each frequency gear and selects the one that gives the best ratio between
62   energy consumption reduction and performance.  This algorithm works online
63   without training or profiling and has a very small overhead.  It also takes
64   into account synchronous communications between the nodes that are executing
65   the distributed algorithm.  The algorithm has been evaluated over the SimGrid
66   simulator while being applied to the NAS parallel benchmark programs.  The
67   results of the experiments show that it outperforms other existing scaling
68   factor selection algorithms.
69 \end{abstract}
70
71 \section{Introduction}
72 \label{sec.intro}
73
74 The need and demand for more computing power have been increasing since the
75 birth of the first computing unit and it is not expected to slow down in the
76 coming years.  To satisfy this demand, researchers and supercomputers
77 constructors have been regularly increasing the number of computing cores and
78 processors in supercomputers (for example in November 2013, according to the
79 TOP500 list~\cite{43}, the Tianhe-2 was the fastest supercomputer.  It has more
80 than 3 million of cores and delivers more than \np[Tflop/s]{33} while consuming
81 \np[kW]{17808}).  This large increase in number of computing cores has led to
82 large energy consumption by these architectures.  Moreover, the price of energy
83 is expected to continue its ascent according to the demand.  For all these
84 reasons energy reduction has become an important topic in the high performance
85 computing field.  To tackle this problem, many researchers use DVFS (Dynamic
86 Voltage Frequency Scaling) operations which reduce dynamically the frequency and
87 voltage of cores and thus their energy consumption.  Indeed, modern CPUs offer a
88 set of acceptable frequencies which are usually called gears, and the user or
89 the operating system can modify the frequency of the processor according to its
90 needs.  However, DVFS also degrades the performance of computation.  Therefore
91 researchers try to reduce the frequency to the minimum when processors are idle
92 (waiting for data from other processors or communicating with other processors).
93 Moreover, depending on their objectives, they use heuristics to find the best
94 scaling factor during the computation.  If they aim for performance they choose
95 the best scaling factor that reduces the consumed energy while affecting as
96 little as possible the performance.  On the other hand, if they aim for energy
97 reduction, the chosen scaling factor must produce the most energy efficient
98 execution without considering the degradation of the performance.  It is
99 important to notice that lowering the frequency to the minimum value does not always
100 give the most energy efficient execution due to energy leakage.  The best
101 scaling factor might be chosen during execution (online) or during a
102 pre-execution phase.  In this paper, we present an algorithm that selects a
103 frequency scaling factor that simultaneously takes into consideration the energy
104 consumption by the CPU and the performance of the application.  The main
105 objective of HPC systems is to execute as fast as possible the application.
106 Therefore, our algorithm selects the scaling factor online with very small
107 overhead.  The proposed algorithm takes into account the communication times of
108 the MPI program to choose the scaling factor.  This algorithm has the ability to
109 predict both energy consumption and execution time over all available scaling
110 factors.  The prediction achieved depends on some computing time information,
111 gathered at the beginning of the runtime.  We apply this algorithm to the NAS parallel benchmarks (NPB v3.3)~\cite{44}.  Our experiments are executed using the simulator
112 SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183} over an homogeneous
113 distributed memory architecture.  Furthermore, we compare the proposed algorithm
114 with Rauber and Rünger methods~\cite{3}.  The comparison's results show that our
115 algorithm gives better energy-time trade-off.
116
117 This paper is organized as follows: Section~\ref{sec.relwork} presents some
118 related works from other authors.  Section~\ref{sec.exe}  presents an energy
119 model for homogeneous platforms.  Section~\ref{sec.mpip} describes how the
120 performance of MPI programs can be predicted.  Section~\ref{sec.compet} presents
121 the energy-performance objective function that maximizes the reduction of energy
122 consumption while minimizing the degradation of the program's performance.
123 Section~\ref{sec.optim} details the proposed energy-performance algorithm.
124 Section~\ref{sec.expe} verifies the accuracy of the performance prediction model
125 and presents the results of the proposed algorithm.  It also shows the
126 comparison results between our method and other existing methods.  Finally, we
127 conclude in Section~\ref{sec.concl} with a summary and some future works.
128
129 \section{Related works}
130 \label{sec.relwork}
131
132
133 In this section, some heuristics to compute the scaling factor are presented and
134 classified into two categories: offline and online methods.
135
136 \subsection{Offline scaling factor selection methods}
137
138 The offline scaling factor selection methods are executed before the runtime of
139 the program.  They return static scaling factor values to the processors
140 participating in the execution of the parallel program.  On the one hand, the
141 scaling factor values could be computed based on information retrieved by
142 analyzing the code of the program and the computing system that will execute it.
143 In~\cite{40}, Azevedo et al. detect during compilation the dependency points
144 between tasks in a multi-task program.  This information is then used to lower
145 the frequency of some processors in order to eliminate slack times.  A slack
146 time is the period of time during which a processor that has already finished
147 its computation, has to wait for a set of processors to finish their
148 computations and send their results to the waiting processor in order to
149 continue its task that is dependent on the results of computations being
150 executed on other processors.  Freeh et al. showed in~\cite{17} that the
151 communication times of MPI programs do not change when the frequency is scaled
152 down.  On the other hand, some offline scaling factor selection methods use the
153 information gathered from previous full or partial executions of the program. The whole program or, a 
154 part of it,  is usually executed over all the available frequency
155 gears and the execution time and the energy consumed with each frequency
156 gear are measured.  Then a heuristic or an exact method uses the retrieved
157 information to compute the values of the scaling factor for the processors.
158 In~\cite{8} , Rountree et al. use a linear programming algorithm, while in~\cite{34}, Cochran et
159 al. use a multi-logistic regression algorithm for the same goal.  The main
160 drawback of these methods is that they all require executing the
161 whole program or, a part of it, on all frequency gears for each new instance of the same program.
162
163 \subsection{Online scaling factor selection methods}
164
165 The online scaling factor selection methods are executed during the runtime of
166 the program.  They are usually integrated into iterative programs where the same
167 block of instructions is executed many times.  During the first few iterations,
168 a lot of information is measured such as the execution time, the energy consumed
169 using a multimeter, the slack times, \dots{} Then a method will exploit these
170 measurements to compute the scaling factor values for each processor.  This
171 operation, measurements and computing new scaling factor, can be repeated as
172 much as needed if the iterations are not regular. Peraza, Yu-Liang et
173 al.~\cite{2,31} used varied heuristics to select the appropriate scaling
174 factor values to eliminate the slack times during runtime.  However, as seen
175 in~\cite{19}, machine learning method takes a lot of time to converge
176 when the number of available gears is big.  To reduce the impact of slack times,
177 in~\cite{1}, Lim et al. developed an algorithm that detects the communication
178 sections and changes the frequency during these sections only.  This approach
179 might change the frequency of each processor many times per iteration if an
180 iteration contains more than one communication section.  In~\cite{3}, Rauber and
181 Rünger used an analytical model that can predict the consumed energy for every frequency gear after measuring the consumed energy. They
182 maintain the performance as mush as possible by setting the highest frequency gear to the slowest task. 
183
184 The primary contribution of 
185 our paper is to present a new online scaling factor selection method which has the
186  following characteristics:\\
187 1) It is based on Rauber and Rünger analytical model to predict the energy
188   consumption of the application with different frequency gears. 
189 2) It selects the frequency scaling factor for simultaneously optimizing
190   energy reduction and maintaining performance. 
191 3) It is well adapted to distributed architectures because it takes into
192   account the communication time. 
193 4) It is well adapted to distributed applications with imbalanced tasks.
194 5) It has a very small overhead when compared to other methods
195   (e.g.,~\cite{19}) and does not require profiling or training as
196   in~\cite{34}.
197
198
199 % \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
200 %   can be deleted if we need space, we can just say we are interested in this
201 %   paper in homogeneous clusters}
202
203
204 \section{Energy model for homogeneous platform}
205 \label{sec.exe}
206 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
207 two power metrics: the static and the dynamic power.  While the first one is
208 consumed as long as the computing unit is on, the latter is only consumed during
209 computation times.  The dynamic power $P_{dyn}$ is related to the switching
210 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
211 operational frequency $f$, as shown in EQ~(\ref{eq:pd}).
212 \begin{equation}
213   \label{eq:pd}
214   P_\textit{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
215 \end{equation}
216 The static power $P_{static}$ captures the leakage power as follows:
217 \begin{equation}
218   \label{eq:ps}
219    P_\textit{static}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
220 \end{equation}
221 where V is the supply voltage, $N_{trans}$ is the number of transistors,
222 $K_{design}$ is a design dependent parameter and $I_{leak}$ is a
223 technology-dependent parameter.  The energy consumed by an individual processor
224 to execute a given program can be computed as:
225 \begin{equation}
226   \label{eq:eind}
227    E_\textit{ind} =  P_\textit{dyn} \cdot T_{Comp} + P_\textit{static} \cdot T
228 \end{equation}
229 where $T$ is the execution time of the program, $T_{Comp}$ is the computation
230 time and $T_{Comp} \leq T$.  $T_{Comp}$ may be equal to $T$ if there is no
231 communication, no slack time and no synchronization.
232
233 DVFS is a process that is allowed in modern processors to reduce the dynamic
234 power by scaling down the voltage and frequency.  Its main objective is to
235 reduce the overall energy consumption~\cite{37}.  The operational frequency $f$
236 depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot f$ with some
237 constant $\beta$.  This equation is used to study the change of the dynamic
238 voltage with respect to various frequency values in~\cite{3}.  The reduction
239 process of the frequency can be expressed by the scaling factor $S$ which is the
240 ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
241 \begin{equation}
242   \label{eq:s}
243  S = \frac{F_\textit{max}}{F_\textit{new}}
244 \end{equation}
245 The value of the scaling factor $S$ is greater than 1 when changing the
246 frequency of the CPU to any new frequency value~(\emph{P-state}) in the
247 governor. This factor reduces quadratically
248 the dynamic power which may cause degradation in performance and thus, the
249 increase of the static energy because the execution time is increased~\cite{36}.
250 If the tasks are sorted according to their execution times before scaling in a
251 descending order, the total energy consumption model for a parallel homogeneous
252 platform, as presented by Rauber and Rünger~\cite{3}, can be written as a
253 function of the scaling factor $S$, as in EQ~(\ref{eq:energy}).
254
255 \begin{equation}
256   \label{eq:energy}
257   E = P_\textit{dyn} \cdot S_1^{-2} \cdot
258     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
259     P_\textit{static} \cdot T_1 \cdot S_1 \cdot N
260  \hfill
261 \end{equation}
262 where $N$ is the number of parallel nodes, $T_i$ for $i=1,\dots,N$ are
263 the execution times and scaling factors of the sorted tasks.  Therefore, $T1$ is
264 the time of the slowest task, and $S_1$ its scaling factor which should be the
265 highest because they are proportional to the time values $T_i$.  The scaling
266 factors are computed as in EQ~(\ref{eq:si}).
267 \begin{equation}
268   \label{eq:si}
269   S_i = S \cdot \frac{T_1}{T_i}
270       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
271 \end{equation}
272 In this paper we use Rauber and Rünger's energy model, EQ~(\ref{eq:energy}), because it can be applied to homogeneous clusters if the communication time is taken in consideration. Moreover, we compare our algorithm with Rauber and Rünger's scaling factor selection
273 method which uses the same energy model.  In their method, the optimal scaling factor is
274 computed by minimizing the derivation of EQ~(\ref{eq:energy}) which produces
275 EQ~(\ref{eq:sopt}).
276
277 \begin{equation}
278   \label{eq:sopt}
279   S_\textit{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_\textit{dyn}}{P_\textit{static}} \cdot
280     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
281 \end{equation}
282
283
284 \section{Performance evaluation of MPI programs}
285 \label{sec.mpip}
286
287 The performance (execution time) of parallel synchronous MPI applications depends
288 on the time of the slowest task.  If there is no
289 communication and the application is not data bounded, the execution time of a
290 parallel program is linearly proportional to the operational frequency and any
291 DVFS operation for energy reduction increases the execution time of the parallel
292 program.  Therefore, the scaling factor $S$ is linearly proportional to the
293 execution time.  However, in most MPI applications the processes exchange
294 data.  During these communications the processors involved remain idle until the
295 communications are finished.  For that reason, any change in the frequency has no
296 impact on the time of communication~\cite{17}.  The communication time for a
297 task is the summation of periods of time that begin with an MPI call for sending
298 or receiving a message till the message is synchronously sent or received.  To
299 be able to predict the execution time of MPI program, the communication time and
300 the computation time for the slowest task must be measured before scaling.  These
301 times are used to predict the execution time for any MPI program as a function
302 of the new scaling factor as in EQ~(\ref{eq:tnew}).
303 \begin{equation}
304   \label{eq:tnew}
305  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
306 \end{equation}
307 In this paper, this prediction method is used to select the best scaling factor
308 for each processor as presented in the next section.
309
310 \section{Performance and energy reduction trade-off}
311 \label{sec.compet}
312
313 This section presents our approach for choosing the optimal scaling factor.
314 This factor gives maximum energy reduction while taking into account the execution
315 times for both computation and communication.  The relation between the performance
316 and the energy is nonlinear and complex. Thus, unlike the relation between the performance and  the scaling factor,  the relation of energy with the scaling factor is nonlinear, for more details refer to~\cite{17}.  Moreover, they are not measured using the same metric.  To
317 solve this problem, we normalize the energy by calculating the ratio between
318 the consumed energy with scaled frequency and the consumed energy without scaled
319 frequency:
320 \begin{multline}
321   \label{eq:enorm}
322   E_\textit{Norm} = \frac{ E_\textit{Reduced}}{E_\textit{Original}} \\
323         {} = \frac{P_\textit{dyn} \cdot S_1^{-2} \cdot
324                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
325                P_\textit{static} \cdot T_1 \cdot S_1 \cdot N  }{
326               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
327               P_\textit{static} \cdot T_1 \cdot N }
328 \end{multline}
329 In the same way we can normalize the performance as follows:
330 \begin{equation}
331   \label{eq:pnorm}
332   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}
333           = \frac{T_\textit{Max Comp Old} \cdot S +
334            T_\textit{Max Comm Old}}{T_\textit{Max Comp Old} +
335            T_\textit{Max Comm Old}}
336 \end{equation}
337 The second problem is that the optimization operation for both energy and
338 performance is not in the same direction.  In other words, the normalized energy
339 and the performance curves are not at the same direction see
340 Figure~\ref{fig:rel}\subref{fig:r2}.  While the main goal is to optimize the
341 energy and performance in the same time.  According to the
342 equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the scaling factor $S$ reduce
343 both the energy and the performance simultaneously.  But the main objective is
344 to produce maximum energy reduction with minimum performance reduction.  Many
345 researchers used different strategies to solve this nonlinear problem for
346 example see~\cite{19,42}, their methods add big overheads to the algorithm to
347 select the suitable frequency.  In this paper we present a method to find the
348 optimal scaling factor $S$ to optimize both energy and performance
349 simultaneously without adding a big overhead.  Our solution for this problem is
350 to make the optimization process for energy and performance follow the same
351 direction.  Therefore, we inverse the equation of the normalized performance as
352 follows:
353 \begin{equation}
354   \label{eq:pnorm_en}
355   P^{-1}_\textit{Norm} = \frac{ T_\textit{Old}}{ T_\textit{New}}
356                = \frac{T_\textit{Max Comp Old} +
357                  T_\textit{Max Comm Old}}{T_\textit{Max Comp Old} \cdot S +
358                  T_\textit{Max Comm Old}}
359 \end{equation}
360 \begin{figure}
361   \centering
362   \subfloat[Real relation.]{%
363     \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}}%
364   \subfloat[Converted relation.]{%
365     \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}
366   \caption{The energy and performance relation}
367   \label{fig:rel}
368 \end{figure}
369 Then, we can model our objective function as finding the maximum distance
370 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
371 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors.  This
372 represents the minimum energy consumption with minimum execution time (better
373 performance) at the same time, see Figure~\ref{fig:rel}\subref{fig:r1}.  Then
374 our objective function has the following form:
375 \begin{equation}
376   \label{eq:max}
377   \textit{Max Dist} = \max_{j=1,2,\dots,F}
378       (\overbrace{P^{-1}_\textit{Norm}(S_j)}^{\text{Maximize}} -
379        \overbrace{E_\textit{Norm}(S_j)}^{\text{Minimize}} )
380 \end{equation}
381 where $F$ is the number of available frequencies. Then we can select the optimal
382 scaling factor that satisfies EQ~(\ref{eq:max}).  Our objective function can
383 work with any energy model or static power values stored in a data file.
384 Moreover, this function works in optimal way when the energy curve has a convex
385 form over the available frequency scaling factors as shown in~\cite{15,3,19}.
386
387 \section{Optimal scaling factor for performance and energy}
388 \label{sec.optim}
389
390 Algorithm on Figure~\ref{EPSA} computes the optimal scaling factor according to
391 the objective function described above.
392 \begin{figure}[tp]
393   \begin{algorithmic}[1]
394     % \footnotesize
395     \State  Initialize the variable $Dist=0$
396     \State Set dynamic and static power values.
397     \State Set $P_{states}$ to the number of available frequencies.
398     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
399     \State Set the variable $F_{diff}$ to the difference between two successive
400            frequencies.
401     \For {$j:=1$   to   $P_{states} $}
402       \State $F_{new}=F_{new} - F_{diff} $
403       \State $S = \frac{F_\textit{max}}{F_\textit{new}}$
404       \State $S_i = S \cdot \frac{T_1}{T_i}
405                   = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}$
406              for $i=1,\dots,N$
407       \State $E_\textit{Norm} =
408           \frac{P_\textit{dyn} \cdot S_1^{-2} \cdot
409                   \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
410                   P_\textit{static} \cdot T_1 \cdot S_1 \cdot N }{
411                 P_\textit{dyn} \cdot
412                   \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
413                   P_\textit{static} \cdot T_1 \cdot N }$
414       \State $P_{NormInv}=T_{old}/T_{new}$
415       \If{$(P_{NormInv}-E_{Norm} > Dist)$}
416         \State $S_{opt} = S$
417         \State $Dist = P_{NormInv} - E_{Norm}$
418       \EndIf
419     \EndFor
420     \State  Return $S_{opt}$
421   \end{algorithmic}
422   \caption{Scaling factor selection algorithm}
423   \label{EPSA}
424 \end{figure}
425
426 The proposed algorithm works online during the execution time of the MPI
427 program.  It selects the optimal scaling factor after gathering the computation
428 and communication times from the program after one iteration.  Then the program
429 changes the new frequencies of the CPUs according to the computed scaling
430 factors. In our experiments over a homogeneous cluster described in
431 Section~\ref{sec.expe}, this algorithm has a small execution time. It takes
432 \np[$\mu$s]{1.52} on average for 4 nodes and \np[$\mu$s]{6.65} on average for 32
433 nodes.  The algorithm complexity is $O(F\cdot N)$, where $F$ is the number of
434 available frequencies and $N$ is the number of computing nodes.  The algorithm
435 is called just once during the execution of the program.  The DVFS algorithm on
436 Figure~\ref{dvfs} shows where and when the algorithm is called in the MPI
437 program.
438 %\begin{table}[htb]
439 %  \caption{Platform file parameters}
440 %  % title of Table
441 %  \centering
442 %  \begin{tabular}{|*{7}{l|}}
443 %    \hline
444 %    Max      & Min      & Backbone        & Backbone         & Link         & Link            & Sharing \\
445 %    Freq.    & Freq.    & Bandwidth       & Latency          & Bandwidth    & Latency         & Policy  \\
446 %    \hline
447 %    \np{2.5} & \np{800} & \np[GBps]{2.25} & \np[$\mu$s]{0.5} & \np[GBps]{1} & \np[$\mu$s]{50} & Full    \\
448 %    GHz      & MHz      &                 &                  &              &                 & Duplex  \\
449 %    \hline
450 %  \end{tabular}
451 %  \label{table:platform}
452 %\end{table}
453
454 \begin{figure}[tp]
455   \begin{algorithmic}[1]
456     % \footnotesize
457     \For {$k:=1$ to \textit{some iterations}}
458       \State Computations section.
459       \State Communications section.
460       \If {$(k=1)$}
461         \State Gather all times of computation and\newline\hspace*{3em}%
462                communication from each node.
463         \State Call algorithm from Figure~\ref{EPSA} with these times.
464         \State Compute the new frequency from the\newline\hspace*{3em}%
465               returned optimal scaling factor.
466         \State Set the new frequency to the CPU.
467       \EndIf
468     \EndFor
469   \end{algorithmic}
470   \caption{DVFS algorithm}
471   \label{dvfs}
472 \end{figure}
473 After obtaining the optimal scaling factor, the program calculates the new
474 frequency $F_i$ for each task proportionally to its time value $T_i$.  By
475 substitution of EQ~(\ref{eq:s}) in EQ~(\ref{eq:si}), we can calculate the new
476 frequency $F_i$ as follows:
477 \begin{equation}
478   \label{eq:fi}
479   F_i = \frac{F_\textit{max} \cdot T_i}{S_\textit{optimal} \cdot T_\textit{max}}
480 \end{equation}
481 According to this equation all the nodes may have the same frequency value if
482 they have balanced workloads, otherwise, they take different frequencies when
483 having imbalanced workloads.  Thus, EQ~(\ref{eq:fi}) adapts the frequency of the
484 CPU to the nodes' workloads to maintain the performance of the program.
485
486 \section{Experimental results}
487 \label{sec.expe}
488 Our experiments are executed on the simulator SimGrid/SMPI v3.10.  We configure
489 the simulator to use a homogeneous cluster with one core per node.  
490 %The detailed characteristics of our platform file are shown in Table~(\ref{table:platform}).  
491 Each node in the cluster has 18 frequency values
492 from \np[GHz]{2.5} to \np[MHz]{800} with \np[MHz]{100} difference between each
493 two successive frequencies. The nodes are connected via an ethernet network with 1Gbit/s  bandwidth. 
494
495 \subsection{Performance prediction verification}
496
497 In this section we evaluate the precision of our performance prediction method
498 based on EQ~(\ref{eq:tnew}) by applying it to the NAS benchmarks.  The NAS programs
499 are executed with the class B option to compare the real execution time with
500 the predicted execution time.  Each program runs offline with all available
501 scaling factors on 8 or 9 nodes (depending on the benchmark) to produce real
502 execution time values.  These scaling factors are computed by dividing the
503 maximum frequency by the new one see EQ~(\ref{eq:s}).
504 \begin{figure}
505   \centering
506   \includegraphics[width=.5\linewidth]{fig/cg_per}\hfill%
507  % \includegraphics[width=.5\linewidth]{fig/mg_pre}\hfill%
508  % \includegraphics[width=.5\linewidth]{fig/bt_pre}\qquad%
509    \includegraphics[width=.5\linewidth]{fig/lu_pre}\hfill%
510   \caption{Comparing predicted to real execution times}
511   \label{fig:pred}
512 \end{figure}
513 %see Figure~\ref{fig:pred}
514 In our cluster there are 18 available frequency states for each processor.  This
515 leads to 18 run states for each program.  We use seven MPI programs of the NAS
516 parallel benchmarks: CG, MG, EP, FT, BT, LU and SP.  Figure~\ref{fig:pred}
517 presents plots of the real execution times and the simulated ones. The maximum
518 normalized error between these two execution times varies between \np{0.0073} to
519 \np{0.031} dependent on the executed benchmark.  The smallest prediction error
520 was for CG and the worst one was for LU.
521
522 \subsection{The experimental results for the scaling algorithm }
523 The proposed algorithm was applied to seven MPI programs of the NAS benchmarks
524 (EP, CG, MG, FT, BT, LU and SP) which were run with three classes (A, B and C).
525 For each instance the benchmarks were executed on a number of processors
526 proportional to the size of the class.  Each class represents the problem size
527 ascending from class A to C.  Additionally, depending on some speed up points
528 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
529 respectively.  Depending on EQ~(\ref{eq:energy}), we measure the energy
530 consumption for all the NAS MPI programs while assuming that the dynamic power
531 with the highest frequency is equal to \np[W]{20} and the power static is equal
532 to \np[W]{4} for all experiments.  These power values were also used by Rauber
533 and Rünger in~\cite{3}.  The results showed that the algorithm selected
534 different scaling factors for each program depending on the communication
535 features of the program as in the plots from Figure~\ref{fig:nas}.  These plots
536 illustrate that there are different distances between the normalized energy and
537 the normalized inverted performance curves, because there are different
538 communication features for each benchmark.  When there are little or no
539 communications, the inverted performance curve is very close to the energy
540 curve.  Then the distance between the two curves is very small.  This leads to
541 small energy savings.  The opposite happens when there are a lot of
542 communication, the distance between the two curves is big.  This leads to more
543 energy savings (e.g. CG and FT), see Table~\ref{table:compareC}.  All discovered
544 frequency scaling factors optimize both the energy and the performance
545 simultaneously for all NAS benchmarks.  In Table~\ref{table:compareC}, we record
546 all optimal scaling factors results for each benchmark running class C.  These
547 scaling factors give the maximum energy saving percentage and the minimum
548 performance degradation percentage at the same time from all available scaling
549 factors.
550 \begin{figure*}[t]
551   \centering
552   \includegraphics[width=.33\linewidth]{fig/ep}\hfill%
553   \includegraphics[width=.33\linewidth]{fig/cg}\hfill%
554  % \includegraphics[width=.328\linewidth]{fig/sp}
555  %  \includegraphics[width=.328\linewidth]{fig/lu}\hfill%
556   \includegraphics[width=.33\linewidth]{fig/bt}
557  % \includegraphics[width=.328\linewidth]{fig/ft}
558   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
559   \label{fig:nas}
560 \end{figure*}
561
562 As shown in Table~\ref{table:compareC}, when the optimal scaling factor has a
563 big value we can gain more energy savings as in CG and FT benchmarks.  The
564 opposite happens when the optimal scaling factor has a small value as in BT and
565 EP benchmarks.  Our algorithm selects a big scaling factor value when the
566 communication and the other slacks times are big and smaller ones in opposite
567 cases.  In EP there are no communication inside the iterations.  This leads our
568 algorithm to select smaller scaling factor values (inducing smaller energy
569 savings).
570
571 \subsection{Results comparison}
572
573 In this section, we compare our scaling factor selection method with Rauber and
574 Rünger methods~\cite{3}.  They had two scenarios, the first is to reduce energy
575 to the optimal level without considering the performance as in
576 EQ~(\ref{eq:sopt}).  We refer to this scenario as $R_{E}$.  The second scenario
577 is similar to the first except setting the slower task to the maximum frequency
578 (when the scale $S=1$) to keep the performance from degradation as mush as
579 possible.  We refer to this scenario as $R_{E-P}$.  While we refer to our
580 algorithm as EPSA (Energy to Performance Scaling Algorithm).  The comparison is
581 made in Table~\ref{table:compareC}.  This table shows the results of our method and
582 Rauber and Rünger scenarios for all the NAS benchmarks programs for class C.
583
584 \begin{table}
585   \caption{Comparing results for the NAS class C}
586   % title of Table
587   \centering
588   \begin{tabular}{|l|l|*{4}{r|}}
589     \hline
590     Method    & Program & Factor & Energy    & Performance    & Energy-Perf. \\
591     Name      & Name    & Value  & Saving \% & Degradation  \% & Distance     \\
592     \hline
593     % \rowcolor[gray]{0.85}
594     $EPSA$    & CG      & 1.56   & 39.23     & 14.88          &  24.35 \\ \hline
595     $R_{E-P}$ & CG      & 2.15   & 45.36     & 25.89          &  19.47 \\ \hline
596     $R_{E}$   & CG      & 2.15   & 45.36     & 26.70          &  18.66 \\ \hline
597
598     $EPSA$    & MG      & 1.47   & 34.97     & 21.69          &  13.27 \\ \hline
599     $R_{E-P}$ & MG      & 2.15   & 43.65     & 40.45          &   3.20 \\ \hline
600     $R_{E}$   & MG      & 2.15   & 43.64     & 41.38          &   2.26 \\ \hline
601
602     $EPSA$    & EP      & 1.04   & 22.14     & 20.73          &   1.41 \\ \hline
603     $R_{E-P}$ & EP      & 1.92   & 39.40     & 56.33          & -16.93 \\ \hline
604     $R_{E}$   & EP      & 1.92   & 38.10     & 56.35          & -18.25 \\ \hline
605
606     $EPSA$    & LU      & 1.38   & 35.83     & 22.49          &  13.34 \\ \hline
607     $R_{E-P}$ & LU      & 2.15   & 44.97     & 41.00          &   3.97 \\ \hline
608     $R_{E}$   & LU      & 2.15   & 44.97     & 41.80          &   3.17 \\ \hline
609
610     $EPSA$    & BT      & 1.31   & 29.60     & 21.28          &   8.32 \\ \hline
611     $R_{E-P}$ & BT      & 2.13   & 45.60     & 49.84          &  -4.24 \\ \hline
612     $R_{E}$   & BT      & 2.13   & 44.90     & 55.16          & -10.26 \\ \hline
613
614     $EPSA$    & SP      & 1.38   & 33.48     & 21.35          &  12.12 \\ \hline
615     $R_{E-P}$ & SP      & 2.10   & 45.69     & 43.60          &   2.09 \\ \hline
616     $R_{E}$   & SP      & 2.10   & 45.75     & 44.10          &   1.65 \\ \hline
617
618     $EPSA$    & FT      & 1.47   & 34.72     & 19.00          &  15.72 \\ \hline
619     $R_{E-P}$ & FT      & 2.04   & 39.40     & 37.10          &   2.30 \\ \hline
620     $R_{E}$   & FT      & 2.04   & 39.35     & 37.70          &   1.65 \\ \hline
621   \end{tabular}
622   \label{table:compareC}
623   % is used to refer this table in the text
624 \end{table}
625 As shown in Table~\ref{table:compareC}, the ($R_{E-P}$) method outperforms the ($R_{E}$)
626 method in terms of performance and energy reduction.  The ($R_{E-P}$) method
627 also gives better energy savings than our method.  However, although our scaling
628 factor is not optimal for energy reduction, the results in this table prove
629 that our algorithm returns the best scaling factor that satisfy our objective
630 method: the largest distance between energy reduction and performance
631 degradation. Figure~\ref{fig:compare}  illustrates even better the distance between 
632 the energy reduction and performance degradation. The negative values mean that one of
633 the two objectives (energy or performance) have been degraded more than the
634 other.  The positive trade-offs with the highest values lead to maximum energy
635 savings while keeping the performance degradation as low as possible.  Our
636 algorithm always gives the highest positive energy to performance trade-offs
637 while Rauber and Rünger's method, ($R_{E-P}$), gives sometimes negative
638 trade-offs such as in BT and EP.
639 \begin{figure}[t]
640   \centering
641 %  \includegraphics[width=.328\linewidth]{fig/compare_class_A}
642 %  \includegraphics[width=.328\linewidth]{fig/compare_class_B}
643   \includegraphics[width=\linewidth]{fig/compare_class_C}
644   \caption{Comparing our method to Rauber and Rünger's methods}
645   \label{fig:compare}
646 \end{figure}
647
648 \section{Conclusion}
649 \label{sec.concl}
650
651 In this paper, we have presented a new online scaling factor selection method
652 that optimizes simultaneously the energy and performance of a distributed
653 application running on an homogeneous cluster.  It uses the computation and
654 communication times measured at the first iteration to predict energy
655 consumption and the performance of the parallel application at every available
656 frequency.  Then, it selects the scaling factor that gives the best trade-off
657 between energy reduction and performance which is the maximum distance between
658 the energy and the inverted performance curves.  To evaluate this method, we
659 have applied it to the NAS benchmarks and it was compared to Rauber and Rünger
660 methods while being executed on the simulator SimGrid.  The results showed that
661 our method, outperforms Rauber and Rünger's methods in terms of energy-performance
662 ratio. 
663
664 In the near future, we would like to adapt this scaling factor selection method
665 to heterogeneous platforms where each node has different characteristics.  In
666 particular, each CPU has different available frequencies, energy consumption and
667 performance.  It would be also interesting to develop a new energy model for
668 asynchronous parallel iterative methods where the number of iterations is not
669 known in advance and depends on the global convergence of the iterative system.
670
671 \section*{Acknowledgment}
672
673 This work has been partially supported by the Labex ACTION project (contract
674 ``ANR-11-LABX-01-01'').  Computations have been performed on the supercomputer
675 facilities of the Mésocentre de calcul de Franche-Comté.  As a PhD student,
676 Mr. Ahmed Fanfakh, would like to thank the University of Babylon (Iraq) for
677 supporting his work.
678
679 % trigger a \newpage just before the given reference
680 % number - used to balance the columns on the last page
681 % adjust value as needed - may need to be readjusted if
682 % the document is modified later
683 %\IEEEtriggeratref{15}
684
685 \bibliographystyle{IEEEtran}
686 \bibliography{IEEEabrv,my_reference}
687 \end{document}
688
689 %%% Local Variables:
690 %%% mode: latex
691 %%% TeX-master: t
692 %%% fill-column: 80
693 %%% ispell-local-dictionary: "american"
694 %%% End:
695
696 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
697 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex