]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
962a22b800097d80365ca9d4d5f5fee16f6d72a9
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 % \usepackage{sectsty}
13 % \usepackage{titlesec}
14 % \usepackage{secdot}
15 %\usepackage[font={footnotesize,bt}]{caption}
16 %\usepackage[font=scriptsize,labelfont=bf]{caption}
17 \usepackage{xspace}
18 \usepackage[textsize=footnotesize]{todonotes}
19 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
20
21 \begin{document}
22
23 \title{Optimal Dynamic Frequency Scaling for Energy-Performance of Parallel MPI Programs}
24
25 \author{%
26   \IEEEauthorblockN{%
27     Ahmed Badri,
28     Jean-Claude Charr,
29     Raphaël Couturier and
30     Arnaud Giersch
31   }
32   \IEEEauthorblockA{%
33     FEMTO-ST Institute\\
34     University of Franche-Comté
35   }
36 }
37
38 \maketitle
39
40 \AG{``Optimal'' is a bit pretentious in the title.\\
41   Complete affiliation, add an email address, etc.}
42
43 \begin{abstract}
44   \AG{complete the abstract\dots}
45 \end{abstract}
46
47 \section{Introduction}
48 \label{sec.intro}
49
50 The need for computing power is still increasing and it is not expected to slow
51 down in the coming years. To satisfy this demand, researchers and supercomputers
52 constructors have been regularly increasing the number of computing cores in
53 supercomputers (for example in November 2013, according to the TOP500
54 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
55 millions of cores and delivers more than 33 Tflop/s while consuming 17808
56 kW). This large increase in number of computing cores has led to large energy
57 consumption by these architectures. Moreover, the price of energy is expected to
58 continue its ascent according to the demand. For all these reasons energy
59 reduction became an important topic in the high performance computing field. To
60 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
61 Scaling) operations which reduce dynamically the frequency and voltage of cores
62 and thus their energy consumption. However, this operation also degrades the
63 performance of computation. Therefore researchers try to reduce the frequency to
64 minimum when processors are idle (waiting for data from other processors or
65 communicating with other processors). Moreover, depending on their objectives
66 they use heuristics to find the best scaling factor during the computation. If
67 they aim for performance they choose the best scaling factor that reduces the
68 consumed energy while affecting as little as possible the performance. On the
69 other hand, if they aim for energy reduction, the chosen scaling factor must
70 produce the most energy efficient execution without considering the degradation
71 of the performance. It is important to notice that lowering the frequency to
72 minimum value does not always give the most efficient execution due to energy
73 leakage. The best scaling factor might be chosen during execution (online) or
74 during a pre-execution phase.  In this paper we emphasize to develop an
75 algorithm that selects the optimal frequency scaling factor that takes into
76 consideration simultaneously the energy consumption and the performance. The
77 main objective of HPC systems is to run the application with less execution
78 time. Therefore, our algorithm selects the optimal scaling factor online with
79 very small footprint. The proposed algorithm takes into account the
80 communication times of the MPI programs to choose the scaling factor. This
81 algorithm has ability to predict both energy consumption and execution time over
82 all available scaling factors.  The prediction achieved depends on some
83 computing time information, gathered at the beginning of the runtime.  We apply
84 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
85 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
86 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
87 over an homogeneous distributed memory architecture. Furthermore, we compare the
88 proposed algorithm with Rauber's methods.
89 \AG{Add citation for Rauber's methods.  Moreover, Rauber was not alone to to this work (use ``Rauber et al.'', or ``Rauber and Gudula'', or \dots)}
90 The comparison's results show that our
91 algorithm gives better energy-time trade off.
92 %
93 \AG{Correctly reword the following}%
94 In Section~\ref{sec.relwork} we present works from other
95 authors. Then, in Sections~\ref{sec.ptasks} and~\ref{sec.energy}, we
96 introduce our model. [\dots] Finally, we conclude in
97 Section~\ref{sec.concl}.
98
99 \section{Related Works}
100 \label{sec.relwork}
101
102 \AG{Consider introducing the models (sec.~\ref{sec.ptasks},
103   maybe~\ref{sec.energy}) before related works}
104
105 In the this section some heuristics, to compute the scaling factor, are
106 presented and classified in two parts : offline and online methods.
107
108 \subsection{The offline DVFS orientations}
109
110 The DVFS offline methods are static and are not executed during the runtime of
111 the program. Some approaches used heuristics to select the best DVFS state
112 during the compilation phases as an example in Azevedo et al.~\cite{40}. He used
113 intra-task algorithm
114 \AG{what is an ``intra-task algorithm''?}
115 to choose the DVFS setting when there are dependency points
116 between tasks. While in~\cite{29}, Xie et al. used breadth-first search
117 algorithm to do that. Their goal is saving energy with time limits. Another
118 approaches gathers and stores the runtime information for each DVFS state, then
119 used their methods offline to select the suitable DVFS that optimize energy-time
120 trade offs. As an example~\cite{8}, Rountree et al. used liner programming
121 algorithm, while in~\cite{38,34}, Cochran et al. used multi logistic regression
122 algorithm for the same goal. The offline study that shown the DVFS impact on the
123 communication time of the MPI program is~\cite{17}, Freeh et al. show that these
124 times not changed when the frequency is scaled down.
125
126 \subsection{The online DVFS orientations}
127
128 The objective of these works is to dynamically compute and set the frequency of
129 the CPU during the runtime of the program for saving energy. Estimating and
130 predicting approaches for the energy-time trade offs developed by
131 ~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
132 times. These times happen when the processors have to wait for data from other
133 processors to compute their task. For example, during the synchronous
134 communication time that take place in the MPI programs, the processors are
135 idle. The optimal DVFS can be selected using the learning methods. Therefore, in
136 ~\cite{39,19} used machine learning to converge to the suitable DVFS
137 configuration. Their learning algorithms have big time to converge when the
138 number of available frequencies is high. Also, the communication time of the MPI
139 program used online for saving energy as in~\cite{1}, Lim et al. developed an
140 algorithm that detects the communication sections and changes the frequency
141 during these sections only. This approach changes the frequency many times
142 because an iteration may contain more than one communication section. The domain
143 of analytical modeling used for choosing the optimal frequency as in~\cite{3},
144 Rauber et al. developed an analytical mathematical model for determining the
145 optimal frequency scaling factor for any number of concurrent tasks, without
146 considering communication times. They set the slowest task to maximum frequency
147 for maintaining performance.  In this paper we compare our algorithm with
148 Rauber's model~\cite{3}, because his model can be used for any number of
149 concurrent tasks for homogeneous platform and this is the same direction of this
150 paper.  However, the primary contributions of this paper are:
151 \begin{enumerate}
152 \item Selecting the optimal frequency scaling factor for energy and performance
153   simultaneously. While taking into account the communication time.
154 \item Adapting our scale factor to taking into account the imbalanced tasks.
155 \item The execution time of our algorithm is very small when compared to other
156   methods (e.g.,~\cite{19}).
157 \item The proposed algorithm works online without profiling or training as
158   in~\cite{38,34}.
159 \end{enumerate}
160
161 \section{Parallel Tasks Execution on Homogeneous Platform}
162 \label{sec.ptasks}
163
164 A homogeneous cluster consists of identical nodes in terms of the hardware and
165 the software. Each node has its own memory and at least one processor which can
166 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
167 executed on this model can be either synchronous or asynchronous. In this paper
168 we consider execution of the synchronous tasks on distributed homogeneous
169 platform. These tasks can exchange the data via synchronous memory passing.
170 \begin{figure*}[t]
171   \centering
172   \subfloat[Sync. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
173   \subfloat[Sync. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
174   \caption{Parallel Tasks on Homogeneous Platform}
175   \label{fig:homo}
176 \end{figure*}
177 \AG{On fig.~\ref{fig:h1}, how can there be a synchronization point without communications just before ?\\
178 Use ``Sync.'' to abbreviate ``Synchronization''}
179 Therefore, the execution time of a task consists of the computation time and the
180 communication time. Moreover, the synchronous communications between tasks can
181 lead to idle time while tasks wait at the synchronous point for others tasks to
182 finish their communications see figure~(\ref{fig:h1}).  Another source for idle
183 times is the imbalanced computations. This happen when processing different
184 amounts of data on each processor as an example see figure~(\ref{fig:h2}). In
185 this case the fastest tasks have to wait at the synchronous barrier for the
186 slowest tasks to finish their job. In both two cases the overall execution time
187 of the program is the execution time of the slowest task as :
188 \begin{equation}
189   \label{eq:T1}
190   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
191 \end{equation}
192 where $T_i$ is the execution time of process $i$.
193
194 \section{Energy Model for Homogeneous Platform}
195 \label{sec.energy}
196
197 The energy consumption by the processor consists of two powers metric: the
198 dynamic and the static power. This general power formulation is used by many
199 researchers see~\cite{9,3,15,26}. The dynamic power of the CMOS processors
200 $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
201 the supply voltage $V$ and operational frequency $f$ respectively as follow :
202 \begin{equation}
203   \label{eq:pd}
204  \textit P_{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
205 \end{equation}
206 The static power $P_{static}$ captures the leakage power consumption as well as
207 the power consumption of peripheral devices like the I/O subsystem.
208 \begin{equation}
209   \label{eq:ps}
210  \textit P_{static}  = V \cdot N \cdot K_{design} \cdot I_{leak}
211 \end{equation}
212 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
213 design dependent parameter and $I_{leak}$ is a technology-dependent
214 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
215 of the dynamic and the static power multiply by the execution time for example
216 see~\cite{36,15}.
217 \begin{equation}
218   \label{eq:eind}
219   \textit E_{ind} = ( P_{dyn} + P_{static} ) \cdot T
220 \end{equation}
221 The dynamic voltage and frequency scaling (DVFS) is a process that allowed in
222 modern processors to reduce the dynamic power by scaling down the voltage and
223 frequency. Its main objective is to reduce the overall energy
224 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
225 supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
226 equation is used to study the change of the dynamic voltage with respect to
227 various frequency values in~\cite{3}. The reduction process of the frequency are
228 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
229 maximum and the new frequency as in EQ~(\ref{eq:s}).
230 \begin{equation}
231   \label{eq:s}
232  S = \frac{F_{max}}{F_{new}}
233 \end{equation}
234 The value of the scale $S$ is greater than 1 when changing the frequency to
235 any new frequency value (\emph {P-state}) in governor.
236 \AG{Explain what's a governor}
237 It is equal to 1 when the
238 frequency are set to the maximum frequency.  The energy consumption model for
239 parallel homogeneous platform is depending on the scaling factor \emph S. This
240 factor reduces quadratically the dynamic power.  Also, this factor increases the
241 static energy linearly because the execution time is increased~\cite{36}.  The
242 energy model, depending on the frequency scaling factor, of homogeneous platform
243 for any number of concurrent tasks develops by Rauber~\cite{3}. This model
244 consider the two powers metric for measuring the energy of the parallel tasks as
245 in EQ~(\ref{eq:energy}).
246
247 \begin{equation}
248   \label{eq:energy}
249   E = P_{dyn} \cdot S_1^{-2} \cdot
250     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
251     P_{static} \cdot T_1 \cdot S_1 \cdot N
252  \hfill
253 \end{equation}
254 Where \emph N is the number of parallel nodes, $T_1 $ is the time of the slower
255 task, $T_i$ is the time of the task $i$ and $S_1$ is the maximum scaling factor
256 for the slower task. The scaling factor $S_1$, as in EQ~(\ref{eq:s1}), selects
257 from the set of scales values $S_i$. Each of these scales are proportional to
258 the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
259 \begin{equation}
260   \label{eq:s1}
261   S_1 = \max_{i=1,2,\dots,F} S_i
262 \end{equation}
263 \begin{equation}
264   \label{eq:si}
265   S_i = S \cdot \frac{T_1}{T_i}
266       = \frac{F_{max}}{F_{new}} \cdot \frac{T_1}{T_i}
267 \end{equation}
268 Where $F$ is the number of available frequencies. In this paper we depend on
269 Rauber's energy model EQ~(\ref{eq:energy}) for two reasons : 1-this model used
270 for homogeneous platform that we work on in this paper. 2-we are compare our
271 algorithm with Rauber's scaling model.  Rauber's optimal scaling factor for
272 optimal energy reduction derived from the EQ~(\ref{eq:energy}). He takes the
273 derivation for this equation (to be minimized) and set it to zero to produce the
274 scaling factor as in EQ~(\ref{eq:sopt}).
275 \begin{equation}
276   \label{eq:sopt}
277  \textit  S_{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_{dyn}}{P_{static}} \cdot
278     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
279 \end{equation}
280
281 \section{Performance Evaluation of MPI Programs}
282 \label{sec.mpip}
283
284 The performance (execution time) of the parallel MPI applications are depends on
285 the time of the slowest task as in figure~(\ref{fig:homo}). Normally the
286 execution time of the parallel programs are proportional to the operational
287 frequency. Therefore, any DVFS operation for the energy reduction increase the
288 execution time of the parallel program. As shown in EQ~(\ref{eq:energy}) the
289 energy affected by the scaling factor $S$. This factor also has a great impact
290 on the performance. When scaling down the frequency to the new value according
291 to EQ~(\ref{eq:s}) lead to the value of the scale $S$ has inverse relation with
292 new frequency value ($S \propto \frac{1}{F_{new}}$). Also when decrease the
293 frequency value, the execution time increase. Then the new frequency value has
294 inverse relation with time ($F_{new} \propto \frac{1}{T}$). This lead to the
295 frequency scaling factor $S$ proportional linearly with execution time ($S
296 \propto T$). Large scale MPI applications such as NAS benchmarks have
297 considerable amount of communications embedded in these programs. During the
298 communication process the processor remain idle until the communication has
299 finished. For that reason any change in the frequency has no impact on the time
300 of communication but it has obvious impact on the time of
301 computation~\cite{17}. We are made many tests on real cluster to prove that the
302 frequency scaling factor \emph S has a linear relation with computation time
303 only also see~\cite{41}. To predict the execution time of MPI program, firstly
304 must be precisely specifying communication time and the computation time for the
305 slower task. Secondly, we use these times for predicting the execution time for
306 any MPI program as a function of the new scaling factor as in the
307 EQ~(\ref{eq:tnew}).
308 \begin{equation}
309   \label{eq:tnew}
310  \textit  T_{new} = T_{\textit{Max Comp Old}} \cdot S + T_{\textit{Max Comm Old}}
311 \end{equation}
312 The above equation shows that the scaling factor \emph S has linear relation
313 with the computation time without affecting the communication time. The
314 communication time consists of the beginning times which an MPI calls for
315 sending or receiving till the message is synchronously sent or received. In this
316 paper we predict the execution time of the program for any new scaling factor
317 value. Depending on this prediction we can produce our energy-performance scaling
318 method as we will show in the coming sections. In the next section we make an
319 investigation study for the EQ~(\ref{eq:tnew}).
320
321 \section{Performance Prediction Verification}
322 \label{sec.verif}
323
324 In this section we evaluate the precision of our performance prediction methods
325 on the NAS benchmark. We use the EQ~(\ref{eq:tnew}) that predicts the execution
326 time for any scale value. The NAS programs run the class B for comparing the
327 real execution time with the predicted execution time. Each program runs offline
328 with all available scaling factors on 8 or 9 nodes to produce real execution
329 time values. These scaling factors are computed by dividing the maximum
330 frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
331 SimGrid/SMPI v3.10 to run the NAS programs.
332 \begin{figure*}[t]
333   \centering
334   \includegraphics[width=.4\textwidth]{cg_per.eps}\qquad%
335   \includegraphics[width=.4\textwidth]{mg_pre.eps}
336   \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
337   \includegraphics[width=.4\textwidth]{lu_pre.eps}
338   \caption{Fitting Predicted to Real Execution Time}
339   \label{fig:pred}
340 \end{figure*}
341 %see Figure~\ref{fig:pred}
342 In our cluster there are 18 available frequency states for each processor from
343 2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
344 frequencies. For more details on the characteristics of the platform refer to
345 table~(\ref{table:platform}). This lead to 18 run states for each program. We
346 use seven MPI programs of the NAS parallel benchmarks : CG, MG, EP, FT, BT, LU
347 and SP. The average normalized errors between the predicted execution time and
348 the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. AS an
349 example, we are present the execution times of the NAS benchmarks as in the
350 figure~(\ref{fig:pred}).
351
352 \section{Performance to Energy Competition}
353 \label{sec.compet}
354
355 This section demonstrates our approach for choosing the optimal scaling
356 factor. This factor gives maximum energy reduction taking into account the
357 execution time for both computation and communication times. The relation
358 between the energy and the performance are nonlinear and complex, because the
359 relation of the energy with scaling factor is nonlinear and with the performance
360 it is linear see~\cite{17}. The relation between the energy and the performance
361 is not straightforward. Moreover, they are not measured using the same metric.
362 For solving this problem, we normalize the energy by calculating the ratio
363 between the consumed energy with scaled frequency and the consumed energy
364 without scaled frequency :
365 \begin{multline}
366   \label{eq:enorm}
367  \textit E_{Norm} = \frac{\textit E_{Reduced}}{\textit E_{Original}} \\
368         {} = \frac{ P_{dyn} \cdot S_i^{-2} \cdot
369                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
370                P_{static} \cdot T_1 \cdot S_i \cdot N  }{
371               P_{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
372               P_{static} \cdot T_1 \cdot N }
373 \end{multline}
374 \AG{Use \texttt{\textbackslash{}text\{xxx\}} or
375   \texttt{\textbackslash{}textit\{xxx\}} for all subscripted words in equations
376   (e.g. \mbox{\texttt{E\_\{\textbackslash{}text\{Norm\}\}}}).
377
378   Don't hesitate to define new commands :
379   \mbox{\texttt{\textbackslash{}newcommand\{\textbackslash{}ENorm\}\{E\_\{\textbackslash{}text\{Norm\}\}\}}}
380 }
381 By the same way we can normalize the performance as follows :
382 \begin{equation}
383   \label{eq:pnorm}
384 \textit  P_{Norm} = \frac{\textit T_{New}}{\textit T_{Old}}
385           = \frac{T_{\textit{Max Comp Old}} \cdot S +
386            T_{\textit{Max Comm Old}}}{\textit T_{Old}}
387 \end{equation}
388 The second problem is the optimization operation for both energy and performance
389 is not in the same direction. In other words, the normalized energy and the
390 performance curves are not in the same direction see figure~(\ref{fig:r2}).
391 While the main goal is to optimize the energy and performance in the same
392 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
393 scaling factor \emph S reduce both the energy and the performance
394 simultaneously. But the main objective is to produce maximum energy reduction
395 with minimum performance reduction. Many researchers used different strategies
396 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
397 big overhead to the algorithm for selecting the suitable frequency. In this
398 paper we are present a method to find the optimal scaling factor \emph S for
399 optimize both energy and performance simultaneously without adding big
400 overheads.  Our solution for this problem is to make the optimization process
401 have the same direction. Therefore, we inverse the equation of normalize
402 performance as follows :
403 \begin{equation}
404   \label{eq:pnorm_en}
405 \textit  P^{-1}_{Norm} = \frac{\textit T_{Old}}{\textit T_{New}}
406                = \frac{\textit T_{Old}}{T_{\textit{Max Comp Old}} \cdot S +
407                  T_{\textit{Max Comm Old}}}
408 \end{equation}
409 \begin{figure*}
410   \centering
411   \subfloat[Converted Relation.]{%
412     \includegraphics[width=.33\textwidth]{file.eps}\label{fig:r1}}%
413   \qquad%
414   \subfloat[Real Relation.]{%
415     \includegraphics[width=.33\textwidth]{file3.eps}\label{fig:r2}}
416   \label{fig:rel}
417   \caption{The Energy and Performance Relation}
418 \end{figure*}
419 Then, we can modelize our objective function as finding the maximum distance
420 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
421 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
422 the minimum energy consumption with minimum execution time (better performance)
423 in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
424 following form:
425 \begin{equation}
426   \label{eq:max}
427   \textit{MaxDist} = \max (\overbrace{\textit P^{-1}_{Norm}}^{\text{Maximize}} -
428                            \overbrace{\textit E_{Norm}}^{\text{Minimize}} )
429 \end{equation}
430 Then we can select the optimal scaling factor that satisfy the
431 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
432 static power values stored in a data file. Moreover, this function works in
433 optimal way when the energy function has a convex form with frequency scaling
434 factor as shown in~\cite{15,3,19}. Energy measurement model is not the
435 objective of this paper and we choose Rauber's model as an example with two
436 reasons that mentioned before.
437
438 \section{Optimal Scaling Factor for Performance and Energy}
439 \label{sec.optim}
440
441 In the previous section we described the objective function that satisfy our
442 goal in discovering optimal scaling factor for both performance and energy at
443 the same time. Therefore, we develop an energy to performance scaling algorithm
444 (EPSA). This algorithm is simple and has a direct way to calculate the optimal
445 scaling factor for both energy and performance at the same time.
446 \begin{algorithm}[tp]
447   \caption{EPSA}
448   \label{EPSA}
449   \begin{algorithmic}[1]
450     \State  Initialize the variable $Dist=0$
451     \State Set dynamic and static power values.
452     \State Set $P_{states}$ to the number of available frequencies.
453     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
454     \State Set the variable $F_{diff}$ to the scale value between each two frequencies.
455     \For {$i=1$   to   $P_{states} $}
456       \State - Calculate the new frequency as $F_{new}=F_{new} - F_{diff} $
457       \State - Calculate the scale factor $S$ as in EQ~(\ref{eq:s}).
458       \State - Calculate all available scales $S_i$  depend on $S$ as in EQ~(\ref{eq:si}).
459       \State - Select the maximum scale factor $S_1$ from the set of scales $S_i$.
460       \State - Calculate the normalize energy $E_{Norm}=E_{R}/E_{O}$ as in EQ~(\ref{eq:enorm}).
461       \State - Calculate the normalize inverse of performance\par
462                $P_{NormInv}=T_{old}/T_{new}$ as in EQ~(\ref{eq:pnorm_en}).
463       \If{  $(P_{NormInv}-E_{Norm} > Dist$) }
464         \State $S_{optimal} = S$
465         \State $Dist = P_{NormInv} - E_{Norm}$
466       \EndIf
467     \EndFor
468     \State  Return $S_{optimal}$
469   \end{algorithmic}
470 \end{algorithm}
471 The proposed EPSA algorithm works online during the execution time of the MPI
472 program. It selects the optimal scaling factor by gathering some information
473 from the program after one iteration. This algorithm has small execution time
474 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The data
475 required by this algorithm is the computation time and the communication time
476 for each task from the first iteration only. When these times are measured, the
477 MPI program calls the EPSA algorithm to choose the new frequency using the
478 optimal scaling factor. Then the program set the new frequency to the
479 system. The algorithm is called just one time during the execution of the
480 program. The DVFS algorithm~(\ref{dvfs}) shows where and when the EPSA algorithm is called
481 in the MPI program.
482 %\begin{minipage}{\textwidth}
483 %\AG{Use the same format as for Algorithm~\ref{EPSA}}
484
485 \begin{algorithm}[tp]
486   \caption{DVFS}
487   \label{dvfs}
488   \begin{algorithmic}
489  \For {$J:=1$ to $Some-Iterations \; $}
490   \State -Computations Section.
491    \State -Communications Section.
492    \If {$(J==1)$} 
493      \State -Gather all times of computation and communication from\par each node.
494      \State -Call EPSA with these times.
495      \State -Calculate the new frequency from optimal scale.
496      \State -Set the new frequency to the system.
497    \EndIf
498 \EndFor
499 \end{algorithmic}
500 \end{algorithm}
501
502 After obtaining the optimal scale factor from the EPSA algorithm. The program
503 calculates the new frequency $F_i$ for each task proportionally to its time
504 value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
505 can calculate the new frequency $F_i$ as follows :
506 \begin{equation}
507   \label{eq:fi}
508   F_i = \frac{F_{max} \cdot T_i}{S_{optimal} \cdot T_{max}}
509 \end{equation}
510 According to this equation all the nodes may have the same frequency value if
511 they have balanced workloads. Otherwise, they take different frequencies when
512 have imbalanced workloads. Then EQ~(\ref{eq:fi}) works in adaptive way to change
513 the frequency according to the nodes workloads.
514
515 \section{Experimental Results}
516 \label{sec.expe}
517
518 The proposed EPSA algorithm was applied to seven MPI programs of the NAS
519 benchmarks (EP, CG, MG, FT, BT, LU and SP). We work on three classes (A, B and
520 C) for each program. Each program runs on specific number of processors
521 proportional to the size of the class.  Each class represents the problem size
522 ascending from the class A to C. Additionally, depending on some speed up points
523 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
524 respectively. Our experiments are executed on the simulator SimGrid/SMPI
525 v3.10. We design a platform file that simulates a cluster with one core per
526 node. This cluster is a homogeneous architecture with distributed memory. The
527 detailed characteristics of our platform file are shown in the
528 table~(\ref{table:platform}). Each node in the cluster has 18 frequency values
529 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
530 frequencies.
531 \begin{table}[htb]
532   \caption{Platform File Parameters}
533   % title of Table
534   \centering
535   \begin{tabular}{ | l | l | l |l | l |l |l |  p{2cm} |}
536     \hline
537     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
538     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
539     2.5 &800 & 2.25 GBps &$5\times 10^{-7} s$& 1 GBps & $5\times 10^{-5} s$ &Full  \\
540     GHz& MHz&  & & &  &Duplex  \\\hline
541   \end{tabular}
542   \label{table:platform}
543 \end{table}
544 Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
545 the NAS MPI programs while assuming the power dynamic is equal to 20W and the
546 power static is equal to 4W for all experiments. We run the proposed EPSA
547 algorithm for all these programs. The results showed that the algorithm selected
548 different scaling factors for each program depending on the communication
549 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
550 there are different distances between the normalized energy and the normalized
551 inversed performance curves, because there are different communication features
552 for each MPI program.  When there are little or not communications, the inversed
553 performance curve is very close to the energy curve. Then the distance between
554 the two curves is very small. This lead to small energy savings. The opposite
555 happens when there are a lot of communication, the distance between the two
556 curves is big.  This lead to more energy savings (e.g. CG and FT), see
557 table~(\ref{table:factors results}). All discovered frequency scaling factors
558 optimize both the energy and the performance simultaneously for all the NAS
559 programs. In table~(\ref{table:factors results}), we record all optimal scaling
560 factors results for each program on class C. These factors give the maximum
561 energy saving percent and the minimum performance degradation percent in the
562 same time over all available scales.
563 \begin{figure*}[t]
564   \centering
565   \includegraphics[width=.33\textwidth]{ep.eps}\hfill%
566   \includegraphics[width=.33\textwidth]{cg.eps}\hfill%
567   \includegraphics[width=.33\textwidth]{sp.eps}
568   \includegraphics[width=.33\textwidth]{lu.eps}\hfill%
569   \includegraphics[width=.33\textwidth]{bt.eps}\hfill%
570   \includegraphics[width=.33\textwidth]{ft.eps}
571   \caption{Optimal scaling factors for The NAS MPI Programs}
572   \label{fig:nas}
573 \end{figure*}
574 \begin{table}[htb]
575   \caption{Optimal Scaling Factors Results}
576   % title of Table
577   \centering
578   \AG{Use the same number of decimals for all numbers in a column,
579     and vertically align the numbers along the decimal points.
580     The same for all the following tables.}
581   \begin{tabular}{ | l | l | l |l | l | p{2cm} |}
582     \hline
583     Program & Optimal & Energy  & Performance&Energy-Perf.\\
584     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
585     CG & 1.56 &39.23&14.88 &24.35\\ \hline
586     MG & 1.47 &34.97&21.70 &13.27 \\ \hline
587     EP & 1.04 &22.14&20.73 &1.41\\ \hline
588     LU & 1.38 &35.83&22.49 &13.34\\ \hline
589     BT & 1.31 &29.60&21.28 &8.32\\ \hline
590     SP & 1.38 &33.48&21.36 &12.12\\ \hline
591     FT & 1.47 &34.72&19.00 &15.72\\ \hline
592   \end{tabular} 
593   \label{table:factors results}
594   % is used to refer this table in the text
595 \end{table}
596
597 As shown in the table~(\ref{table:factors results}), when the optimal scaling
598 factor has big value we can gain more energy savings for example as in CG and
599 FT. The opposite happens when the optimal scaling factor is small value as
600 example BT and EP. Our algorithm selects big scaling factor value when the
601 communication and the other slacks times are big and smaller ones in opposite
602 cases. In EP there are no communications inside the iterations. This make our
603 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
604
605 \section{Comparing Results}
606 \label{sec.compare}
607
608 In this section, we compare our EPSA algorithm results with Rauber's
609 methods~\cite{3}. He had two scenarios, the first is to reduce energy to optimal
610 level without considering the performance as in EQ~(\ref{eq:sopt}). We refer to
611 this scenario as $Rauber_{E}$. The second scenario is similar to the first
612 except setting the slower task to the maximum frequency (when the scale $S=1$)
613 to keep the performance from degradation as mush as possible. We refer to this
614 scenario as $Rauber_{E-P}$. The comparison is made in tables~(\ref{table:compare
615   Class A},\ref{table:compare Class B},\ref{table:compare Class C}). These
616 tables show the results of our EPSA and Rauber's two scenarios for all the NAS
617 benchmarks programs for classes A,B and C.
618 \begin{table*}[p]
619   \caption{Comparing Results for  The NAS Class A}
620   % title of Table
621   \centering
622   \begin{tabular}{ | l | l | l |l | l | l|  }
623     \hline
624     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
625     name &name&value& Saving \%&Degradation \% &Distance
626     \\ \hline
627     % \rowcolor[gray]{0.85}
628     EPSA&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
629     $Rauber_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.50\\ \hline
630     $Rauber_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
631
632     EPSA&MG & 1.47 &27.66&16.82&10.84\\ \hline
633     $Rauber_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
634     $Rauber_{E}$&MG &2.14&34.48&33.65&0.80 \\ \hline
635
636     EPSA&EP &1.19 &25.32&20.79&4.53\\ \hline
637     $Rauber_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
638     $Rauber_{E}$&EP&2.05&42.09&57.59&-15.50\\ \hline
639
640     EPSA&LU&1.56& 39.55 &19.38& 20.17\\ \hline
641     $Rauber_{E-P}$&LU&2.14&45.62&27.00&18.62 \\ \hline
642     $Rauber_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
643
644     EPSA&BT&1.31& 29.60&20.53&9.07 \\ \hline
645     $Rauber_{E-P}$&BT&2.10&45.53&49.63&-4.10\\ \hline
646     $Rauber_{E}$&BT&2.10&43.93&52.86&-8.93\\ \hline
647
648     EPSA&SP&1.38& 33.51&15.65&17.86 \\ \hline
649     $Rauber_{E-P}$&SP&2.11&45.62&42.52&3.10\\ \hline
650     $Rauber_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
651
652     EPSA&FT&1.25&25.00&10.80&14.20 \\ \hline
653     $Rauber_{E-P}$&FT&2.10&39.29&34.30&4.99 \\ \hline
654     $Rauber_{E}$&FT&2.10&37.56&38.21&-0.65\\ \hline
655   \end{tabular}
656   \label{table:compare Class A}
657   % is used to refer this table in the text
658 \end{table*}
659 \begin{table*}[p]
660   \caption{Comparing Results for The NAS Class B}
661   % title of Table
662   \centering
663   \begin{tabular}{ | l | l | l |l | l |l|  }
664     \hline
665     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
666     name &name&value& Saving \%&Degradation \% &Distance
667     \\ \hline
668     % \rowcolor[gray]{0.85}
669     EPSA&CG & 1.66 &39.23&16.63&22.60   \\ \hline
670     $Rauber_{E-P}$&CG &2.15 &45.34&27.60&17.74\\ \hline
671     $Rauber_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
672
673     EPSA&MG & 1.47 &34.98&18.35&16.63\\ \hline
674     $Rauber_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
675     $Rauber_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
676
677     EPSA&EP &1.08 &20.29&17.15&3.14 \\ \hline
678     $Rauber_{E-P}$&EP&2.00&42.38&56.88&-14.50\\ \hline
679     $Rauber_{E}$&EP&2.00&39.73&59.94&-20.21\\ \hline
680
681     EPSA&LU&1.47&38.57&21.34&17.23 \\ \hline
682     $Rauber_{E-P}$&LU&2.10&43.62&36.51&7.11 \\ \hline
683     $Rauber_{E}$&LU&2.10&43.61&38.54&5.07 \\ \hline
684
685     EPSA&BT&1.31& 29.59&20.88&8.71\\ \hline
686     $Rauber_{E-P}$&BT&2.10&44.53&53.05&-8.52\\ \hline
687     $Rauber_{E}$&BT&2.10&42.93&52.80&-9.87\\ \hline
688
689     EPSA&SP&1.38&33.44&19.24&14.20 \\ \hline
690     $Rauber_{E-P}$&SP&2.15&45.69&43.20&2.49\\ \hline
691     $Rauber_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
692
693     EPSA&FT&1.38&34.40&14.57&19.83 \\ \hline
694     $Rauber_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
695     $Rauber_{E}$&FT&2.13&43.04&37.90&5.14\\ \hline
696   \end{tabular}
697   \label{table:compare Class B}
698   % is used to refer this table in the text
699 \end{table*}
700
701 \begin{table*}[p]
702   \caption{Comparing Results for The NAS Class C}
703   % title of Table
704   \centering
705   \begin{tabular}{ | l | l | l |l | l |l|  }
706     \hline
707     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
708     name &name&value& Saving \%&Degradation \% &Distance
709     \\ \hline
710     % \rowcolor[gray]{0.85}
711     EPSA&CG & 1.56 &39.23&14.88&24.35  \\ \hline
712     $Rauber_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
713     $Rauber_{E}$&CG &2.15 &45.36&26.70&18.66\\ \hline
714
715     EPSA&MG & 1.47 &34.97&21.69&13.27\\ \hline
716     $Rauber_{E-P}$&MG &2.15&43.65&40.45&3.20 \\ \hline
717     $Rauber_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
718
719     EPSA&EP &1.04 &22.14&20.73&1.41 \\ \hline
720     $Rauber_{E-P}$&EP&1.92&39.40&56.33&-16.93\\ \hline
721     $Rauber_{E}$&EP&1.92&38.10&56.35&-18.25\\ \hline
722
723     EPSA&LU&1.38&35.83&22.49&13.34 \\ \hline
724     $Rauber_{E-P}$&LU&2.15&44.97&41.00&3.97 \\ \hline
725     $Rauber_{E}$&LU&2.15&44.97&41.80&3.17 \\ \hline
726
727     EPSA&BT&1.31& 29.60&21.28&8.32\\ \hline
728     $Rauber_{E-P}$&BT&2.13&45.60&49.84&-4.24\\ \hline
729     $Rauber_{E}$&BT&2.13&44.90&55.16&-10.26\\ \hline
730
731     EPSA&SP&1.38&33.48&21.35&12.12\\ \hline
732     $Rauber_{E-P}$&SP&2.10&45.69&43.60&2.09\\ \hline
733     $Rauber_{E}$&SP&2.10&45.75&44.10&1.65\\ \hline
734
735     EPSA&FT&1.47&34.72&19.00&15.72 \\ \hline
736     $Rauber_{E-P}$&FT&2.04&39.40&37.10&2.30\\ \hline
737     $Rauber_{E}$&FT&2.04&39.35&37.70&1.65\\ \hline
738   \end{tabular}
739 \label{table:compare Class C}
740 % is used to refer this table in the text
741 \end{table*}
742 As shown in these tables our scaling factor is not optimal for energy saving
743 such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
744 the energy and the performance simultaneously. Our EPSA optimal scaling factors
745 has better simultaneous optimization for both the energy and the performance
746 compared to Rauber's energy-performance method ($Rauber_{E-P}$). Also, in
747 ($Rauber_{E-P}$) method when setting the frequency to maximum value for the
748 slower task lead to a small improvement of the performance. Also the results
749 show that this method keep or improve energy saving. Because of the energy
750 consumption decrease when the execution time decreased while the frequency value
751 increased.
752
753 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
754 percent and the performance degradation percent. Therefore, this means it is the
755 same resultant of our objective function EQ~(\ref{eq:max}). Our algorithm always
756 gives positive energy to performance trade offs while Rauber's method
757 ($Rauber_{E-P}$) gives in some time negative trade offs such as in BT and
758 EP. The positive trade offs with highest values lead to maximum energy savings
759 concatenating with less performance degradation and this the objective of this
760 paper. While the negative trade offs refers to improving energy saving (or may
761 be the performance) while degrading the performance (or may be the energy) more
762 than the first.
763 \begin{figure}[t]
764   \centering
765   \includegraphics[width=.33\textwidth]{compare_class_A.pdf}
766   \includegraphics[width=.33\textwidth]{compare_class_B.pdf}
767   \includegraphics[width=.33\textwidth]{compare_class_c.pdf}
768   \caption{Comparing Our EPSA with Rauber's Methods}
769   \label{fig:compare}
770 \end{figure}
771
772 \section{Conclusion}
773 \label{sec.concl}
774
775 \AG{the conclusion needs to be written\dots{} one day}
776
777 \section*{Acknowledgment}
778
779 \AG{Right?}
780 Computations have been performed on the supercomputer facilities of the
781 Mésocentre de calcul de Franche-Comté.
782
783 % trigger a \newpage just before the given reference
784 % number - used to balance the columns on the last page
785 % adjust value as needed - may need to be readjusted if
786 % the document is modified later
787 %\IEEEtriggeratref{15}
788
789 \bibliographystyle{IEEEtran}
790 \bibliography{IEEEabrv,my_reference}
791 \end{document}
792
793 %%% Local Variables:
794 %%% mode: latex
795 %%% TeX-master: t
796 %%% fill-column: 80
797 %%% ispell-local-dictionary: "american"
798 %%% End:
799
800 %  LocalWords:  Badri Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
801 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop