]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update two remarks.
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12
13 \usepackage[autolanguage,np]{numprint}
14 \renewcommand*\npunitcommand[1]{\text{#1}}
15
16 \usepackage{xspace}
17 \usepackage[textsize=footnotesize]{todonotes}
18 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
19 \newcommand{\JC}[2][inline]{\todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
20
21 \begin{document}
22
23 \title{Dynamic Frequency Scaling for Energy Consumption Reduction in Distributed MPI Programs}
24
25 \author{%
26   \IEEEauthorblockN{%
27     Jean-Claude Charr,
28     Raphaël Couturier,
29     Ahmed Fanfakh and
30     Arnaud Giersch
31   }
32   \IEEEauthorblockA{%
33     FEMTO-ST Institute\\
34     University of Franche-Comté\\
35     IUT de Belfort-Montbéliard, 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
36     Fax  : +33~3~84~58~77~32\\
37     Email: \{jean-claude.charr,raphael.couturier,ahmed.fanfakh\_badri\_muslim,arnaud.giersch\}@univ-fcomte.fr
38    }
39   }
40
41 \maketitle
42
43 \AG{Is the fax number correct? Shall we add a telephone number?}
44 \JC{Use Capital letters for only the first letter in the title of a section, table, figure, ...} 
45 \begin{abstract}
46   Dynamic Voltage Frequency Scaling (DVFS) can be applied to modern CPUs. 
47 This technique is usually used to reduce the energy consumed by a CPU while
48 computing . Indeed, power consumption by a processor at a given instant is
49 exponentially related to its frequency. Thus, decreasing the frequency reduces
50 the power consumed by the CPU. However, it can also significantly affect the
51 performance of the executed program if it is compute bound and a low CPU
52 frequency is selected. The performance degradation ratio can even be higher than
53 the saved energy ratio.Therefore, the chosen scaling factor must give the best possible tradeoff
54 between energy reduction and performance. 
55
56 In this paper we present an algorithm
57 that predicts the energy consumed with each frequency gear and selects the one that
58 gives the best ratio between energy consumption reduction and performance.
59 This algorithm works online without training or profiling and
60 has a very small overhead. It also takes into account synchronous communications between the nodes
61 that are executing the distributed algorithm. The algorithm has been evaluated over the SimGrid simulator
62 while being applied to the NAS parallel benchmark programs. The results of the experiments show that it outperforms other existing scaling factor selection algorithms.
63 \end{abstract}
64
65 \section{Introduction}
66 \label{sec.intro}
67
68 The need and demand for more computing power have been increasing since the birth of the first computing unit and it is not expected to slow
69 down in the coming years. To satisfy this demand, researchers and supercomputers
70 constructors have been regularly increasing the number of computing cores and processors in
71 supercomputers (for example in November 2013, according to the TOP500
72 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
73 millions of cores and delivers more than 33 Tflop/s while consuming 17808
74 kW). This large increase in number of computing cores has led to large energy
75 consumption by these architectures. Moreover, the price of energy is expected to
76 continue its ascent according to the demand. For all these reasons energy
77 reduction became an important topic in the high performance computing field. To
78 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
79 Scaling) operations which reduce dynamically the frequency and voltage of cores
80 and thus their energy consumption. Indeed, modern CPUs offer a set of acceptable frequencies which are usually called gears, and the user or the operating system can modify the frequency of the processor according to its needs. However, DVFS also degrades the
81 performance of computation. Therefore researchers try to reduce the frequency to
82 minimum when processors are idle (waiting for data from other processors or
83 communicating with other processors). Moreover, depending on their objectives
84 they use heuristics to find the best scaling factor during the computation. If
85 they aim for performance they choose the best scaling factor that reduces the
86 consumed energy while affecting as little as possible the performance. On the
87 other hand, if they aim for energy reduction, the chosen scaling factor must
88 produce the most energy efficient execution without considering the degradation
89 of the performance. It is important to notice that lowering the frequency to
90 minimum value does not always give the most energy efficient execution due to energy
91 leakage. The best scaling factor might be chosen during execution (online) or
92 during a pre-execution phase.  In this paper, we present an
93 algorithm that selects a frequency scaling factor that simultaneously takes into
94 consideration  the energy consumption by the CPU and the performance of the application. The
95 main objective of HPC systems is to execute as fast as possible the application. 
96 Therefore, our algorithm selects the scaling factor online with
97 very small footprint. The proposed algorithm takes into account the
98 communication times of the MPI program to choose the scaling factor. This
99 algorithm has ability to predict both energy consumption and execution time over
100 all available scaling factors.  The prediction achieved depends on some
101 computing time information, gathered at the beginning of the runtime.  We apply
102 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
103 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
104 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
105 over an homogeneous distributed memory architecture. Furthermore, we compare the
106 proposed algorithm with Rauber and Rünger methods~\cite{3}.
107 The comparison's results show that our
108 algorithm gives better energy-time tradeoff.
109
110 This paper is organized as follows: Section~\ref{sec.relwork} presents related works
111 from other authors.  Section~\ref{sec.exe} shows the execution of parallel
112 tasks and sources of idle times.  It resumes the energy
113 model of homogeneous platform. Section~\ref{sec.mpip} evaluates the performance
114 of MPI program.  Section~\ref{sec.compet} presents the energy-performance tradeoffs
115 objective function. Section~\ref{sec.optim} demonstrates the proposed
116 energy-performance algorithm. Section~\ref{sec.expe} verifies the performance prediction
117 model and presents the results of the proposed algorithm.  Also, It shows the comparison results. Finally,
118 we conclude in Section~\ref{sec.concl}.
119 \section{Related Works}
120 \label{sec.relwork}
121
122 \AG{Consider introducing the models (sec.~\ref{sec.exe}) before related works}
123
124 In this section, some heuristics to compute the scaling factor are
125 presented and classified into two categories: offline and online methods.
126
127 \subsection{Offline scaling factor selection methods}
128
129 The offline scaling factor selection methods are executed before the runtime of
130 the program. They return static scaling factor values to the processors
131 participating in the execution of the parallel program. On one hand, the scaling
132 factor
133 values could be computed based on information retrieved by analyzing the code of
134 the program and the computing system that will execute it. In ~\cite{40},
135 Azevedo et
136 al. detect during compilation the dependency points between  
137 tasks in a parallel program. This information is then used to lower the frequency of
138 some processors in order to eliminate slack times. A slack time is the period of time during which a processor that have already finished its computation, have to wait
139 for a set of processors to finish their computations and send their results to the
140 waiting processor in order to continue its task that is
141 dependent on the results of computations being executed on other processors.
142 Freeh et al. showed in ~\cite{17} that the 
143 communication times of MPI programs do not change when the frequency is scaled down.
144 On the other hand, some offline scaling factor selection methods use the
145 information gathered from previous full or
146 partial executions of the program. A part or the whole program is usually executed over all the available frequency gears and the the execution time and the energy consumed  with each frequency gear are measured. Then an heuristic or an exact method uses the retrieved information to compute the values of the scaling factor for the processors.  
147    In~\cite{29}, Xie et al. use an exact exponential breadth-first search algorithm to compute the scaling factor values that give the optimal energy reduction while respecting a deadline for a sequential program. They also present a linear heuristic that approximates the optimal solution. In~\cite{8} , Rountree et al. use a linear programming
148 algorithm, while in~\cite{38,34}, Cochran et al. use multi logistic regression algorithm for the same goal. 
149 The main drawback for these methods is that they all require executing a part or the whole program on all frequency gears for each new instance of the same program. 
150
151 \subsection{Online scaling factor selection methods}
152 The online scaling factor selection methods are executed during the runtime of the program. They are usually integrated into iterative programs where the same block of instructions is executed many times.  During the first few iterations, many informations are measured such as the execution time, the energy consumed using a multimeter, the slack times, ... Then a  method will exploit these measurements to compute the scaling factor values for each processor. This operation, measurements and computing new scaling factor, can be repeated as much as needed if the iterations are not regular. Kimura, Peraza, Yu-Liang et al.  ~\cite{11,2,31} used learning methods to select the appropriate scaling factor values  to eliminate the slack times during runtime. However, as seen in ~\cite{39,19}, machine learning methods can take a lot of time to converge when the number of available gears is big. To reduce the impact of slack times,  in~\cite{1}, Lim et al. developed an algorithm that detects the
153 communication sections and changes the frequency during these sections
154 only. This approach might change the frequency of each processor many times per iteration if an iteration
155 contains more than one communication section. In ~\cite{3}, Rauber et al. used an analytical model that after measuring the energy consumed and the execution time with the highest frequency gear, it can predict the energy consumed and the execution time for every frequency gear .   These predictions may be used to choose the optimal gear for each processor executing the parallel program to reduce energy consumption. 
156 To maintain the performance of the parallel program , they
157 set the  processor with the biggest load to the highest gear and then compute the scaling  factor values for the rest pf the processors. Although this model was built for parallel architectures, it can be adapted  to distributed architectures by taking into account the communications. 
158 The primary contribution of this paper is presenting a new online scaling factor selection method which has the following characteristics :
159 \begin{enumerate}
160 \item Based on Rauber's analytical model to predict the energy consumption and the execution time of the application with different frequency gears. 
161 \item Selects the frequency scaling factor for simultaneously optimizing energy reduction and maintaining performance.
162 \item Well adapted to distributed architectures because it takes into account the communication time.
163 \item Well adapted to distributed applications with imbalanced tasks.
164 \item Has very small footprint when compared to other
165   methods (e.g.,~\cite{19}) and does not require profiling or training as
166   in~\cite{38,34}.
167 \end{enumerate}
168
169
170 \section{Execution and Energy of Parallel Tasks on Homogeneous Platform} 
171 \label{sec.exe}
172 \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'', can be deleted if we need space, we can just say we are interested in this paper in homogeneous clusters}
173 \subsection{Parallel Tasks Execution on Homogeneous Platform}
174 A homogeneous cluster consists of identical nodes in terms of hardware and software. 
175 Each node has its own memory and at least one processor which can
176 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
177 executed on this model can be either synchronous or asynchronous. In this paper
178 we consider execution of the synchronous tasks on distributed homogeneous
179 platform. These tasks can exchange the data via synchronous message passing.
180 \begin{figure*}[t]
181   \centering
182   \subfloat[Sync. Imbalanced Communications]{\includegraphics[scale=0.67]{commtasks}\label{fig:h1}}
183   \subfloat[Sync. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
184   \caption{Parallel Tasks on Homogeneous Platform}
185   \label{fig:homo}
186 \end{figure*}
187 Therefore, the execution time of a task consists of the computation time and the
188 communication time. Moreover, the synchronous communications between tasks can
189 lead to slack times while tasks wait at the synchronization barrier for other tasks to
190 finish their tasks (see figure~(\ref{fig:h1})). The imbalanced communications 
191 happen when nodes have to send/receive different amount of data or they communicate
192 with different number of nodes. Another source of idle times is the imbalanced computations.  
193 This happens when processing different amounts of data on each processor  (see figure~(\ref{fig:h2})).  
194 In this case the fastest tasks have to wait at the synchronization barrier for the 
195 slowest ones to begin the next task. In both cases the overall execution time 
196 of the program is the execution time of the slowest task as in equation \ref{eq:T1}.
197 \begin{equation}
198   \label{eq:T1}
199   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
200 \end{equation}
201 where $T_i$ is the execution time of task $i$ and all the tasks are executed concurrently on different processors.
202
203 \subsection{Energy Model for Homogeneous Platform}
204
205 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor to two power metrics: the
206  static and the dynamic power. While the first one is consumed as long as the computing unit is on, the latter is only consumed during computation times. The dynamic power
207 $P_{dyn}$  is related to the switching activity $\alpha$, load capacitance $C_L$,
208 the supply voltage $V$ and operational frequency $f$, as shown in equation ~\ref{eq:pd}.
209 \begin{equation}
210   \label{eq:pd}
211   P_\textit{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
212 \end{equation}
213 The static power $P_{static}$ captures the leakage power as follows:
214 \begin{equation}
215   \label{eq:ps}
216    P_\textit{static}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
217 \end{equation}
218 where V is the supply voltage, $N_{trans}$ is the number of transistors, $K_{design}$ is a
219 design dependent parameter and $I_{leak}$ is a technology-dependent
220 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
221 of the dynamic and the static powers multiplied by the execution time~\cite{36,15}.
222 \begin{equation}
223   \label{eq:eind}
224    E_\textit{ind} = ( P_\textit{dyn} + P_\textit{static} ) \cdot T
225 \end{equation}
226 DVFS is a process that is allowed in
227 modern processors to reduce the dynamic power by scaling down the voltage and
228 frequency. Its main objective is to reduce the overall energy
229 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
230 supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
231 equation is used to study the change of the dynamic voltage with respect to
232 various frequency values in~\cite{3}. The reduction process of the frequency can be
233 expressed by the scaling factor \emph S which is the ratio between the
234 maximum and the new frequency as in EQ~(\ref{eq:s}).
235 \begin{equation}
236   \label{eq:s}
237  S = \frac{F_\textit{max}}{F_\textit{new}}
238 \end{equation}
239 The value of the scaling factor $S$ is greater than 1 when changing the frequency of the CPU to any
240 new frequency value~(\emph {P-state}) in the governor. The CPU governor is an
241 interface driver supplied by the operating system's kernel to
242 lower a core's frequency.  This factor reduces
243 quadratically the dynamic power which may cause degradation in performance and thus, the increase of the static energy because the execution time is increased~\cite{36}. If the tasks are sorted according to their execution times before scaling in a descending order,   the total energy consumption model for a parallel
244 homogeneous platform, as  presented by Rauber et al.~\cite{3}, can be written as a function of   the scaling factor \emph S,   as in EQ~(\ref{eq:energy}).
245
246 \JC{Are you sure of the following equation}
247 \begin{equation}
248   \label{eq:energy}
249   E = P_\textit{dyn} \cdot S_1^{-2} \cdot
250     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
251     P_\textit{static} \cdot T_1 \cdot S_1 \cdot N
252  \hfill
253 \end{equation}
254 where \emph N is the number of parallel nodes,  $T_i  \  and  \  S_i \  for \  i=1,...,N$ are the execution times and scaling factors of the sorted tasks. Therefore,  $T1$ is the time of the slowest task,  and $S_1$ its scaling factor which should be the highest because they are proportional to
255 the time values $T_i$.  The scaling factors are computed as in EQ~(\ref{eq:si}).
256 \JC{This equation does not make sense either, what's S? there is no F}
257 \begin{equation}
258   \label{eq:si}
259   S_i = S \cdot \frac{T_1}{T_i}
260       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
261 \end{equation}
262 \JC{The Rauber model was used for a parallel machine not a homogeneous platform}
263 where $F$ is the number of available frequencies. In this paper we depend on
264 Rauber and Rünger energy model EQ~(\ref{eq:energy}) for two reasons: (1) this
265 model is used for homogeneous platform that we work on in this paper, and (2) we
266 compare our algorithm with Rauber and Rünger scaling factor selection method which is based on
267 EQ~(\ref{eq:energy}). The optimal scaling factor is computed by minimizing the derivation for this equation which produces EQ~(\ref{eq:sopt}).
268 \JC{what's the small n in the equation}
269
270 \begin{equation}
271   \label{eq:sopt}
272   S_\textit{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_\textit{dyn}}{P_\textit{static}} \cdot
273     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
274 \end{equation}
275
276 \JC{The following 2 sections can be merged easily}
277
278 \section{Performance Evaluation of MPI Programs}
279 \label{sec.mpip}
280
281 The performance (execution time) of  parallel synchronous MPI applications depend on
282 the time of the slowest task as in figure~(\ref{fig:homo}).  If there is no communication and the application is not data bounded,   the
283 execution time of a parallel program is linearly proportional to the operational
284 frequency and  any DVFS operation for  energy reduction increases the
285 execution time of the parallel program. Therefore, the scaling factor $S$ is  linearly proportional to the  execution time. However, in most of MPI applications  the processes exchange data. During these
286 communications the processors involved remain idle until the communications are
287 finished. For that reason any change in the frequency has no impact on the time
288 of communication~\cite{17}. The
289 communication time for a task is the summation of  periods of time that  begin with an MPI call for
290 sending or receiving a message till the message is synchronously sent or received. To be able to predict the execution time of MPI program, the communication time and 
291 the computation time for the slower task must be  measured before scaling. These times are used to predict the execution time for any MPI program as a function of 
292 the new scaling factor as in EQ~(\ref{eq:tnew}).
293 \begin{equation}
294   \label{eq:tnew}
295  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
296 \end{equation}
297  In this paper, this prediction method is used to select the best scaling factor for each processor as presented in the next section.
298
299
300 \section{Performance to Energy Competition}
301 \label{sec.compet}
302
303 This section demonstrates our approach for choosing the optimal scaling
304 factor. This factor gives maximum energy reduction taking into account the
305 execution times for both computation and communication. The relation
306 between the energy and the performance is nonlinear and complex, because the
307 relation of the energy with scaling factor is nonlinear and with the performance
308 it is linear see~\cite{17}.  Moreover, they are not measured using the same metric.
309 For solving this problem, we normalize the energy by calculating the ratio
310 between the consumed energy with scaled frequency and the consumed energy
311 without scaled frequency:
312 \begin{multline}
313   \label{eq:enorm}
314   E_\textit{Norm} = \frac{ E_\textit{Reduced}}{E_\textit{Original}} \\
315         {} = \frac{P_\textit{dyn} \cdot S_i^{-2} \cdot
316                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
317                P_\textit{static} \cdot T_1 \cdot S_i \cdot N  }{
318               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
319               P_\textit{static} \cdot T_1 \cdot N }
320 \end{multline}
321 By the same way we can normalize the performance as follows:
322 \begin{equation}
323   \label{eq:pnorm}
324   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}
325           = \frac{T_\textit{Max Comp Old} \cdot S +
326            T_\textit{Max Comm Old}}{T_\textit{Max Comp Old} +
327            T_\textit{Max Comm Old}}
328 \end{equation}
329 The second problem is that the optimization operation for both energy and performance
330 is not in the same direction. In other words, the normalized energy and the
331 performance curves are not in the same direction see figure~(\ref{fig:r2}).
332 While the main goal is to optimize the energy and performance in the same
333 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the
334 scaling factor \emph S reduce both the energy and the performance
335 simultaneously. But the main objective is to produce maximum energy reduction
336 with minimum performance reduction. Many researchers used different strategies
337 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
338 big overhead to the algorithm for selecting the suitable frequency. In this
339 paper we present a method to find the optimal scaling factor \emph S for
340 optimizing both energy and performance simultaneously without adding big
341 overheads.  Our solution for this problem is to make the optimization process
342 have the same direction. Therefore, we inverse the equation of normalize
343 performance as follows:
344 \begin{equation}
345   \label{eq:pnorm_en}
346   P^{-1}_\textit{Norm} = \frac{ T_\textit{Old}}{ T_\textit{New}}
347                = \frac{ T_\textit{Old}}{T_\textit{Max Comp Old} \cdot S +
348                  T_\textit{Max Comm Old}}
349 \end{equation}
350 \begin{figure*}
351   \centering
352   \subfloat[Converted Relation.]{%
353     \includegraphics[width=.4\textwidth]{file.eps}\label{fig:r1}}%
354   \qquad%
355   \subfloat[Real Relation.]{%
356     \includegraphics[width=.4\textwidth]{file3.eps}\label{fig:r2}}
357   \label{fig:rel}
358   \caption{The Energy and Performance Relation}
359 \end{figure*}
360 Then, we can modelize our objective function as finding the maximum distance
361 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
362 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
363 the minimum energy consumption with minimum execution time (better performance)
364 at the same time, see figure~(\ref{fig:r1}). Then our objective function has the
365 following form:
366 \begin{equation}
367   \label{eq:max}
368   \textit{MaxDist} = \max (\overbrace{P^{-1}_\textit{Norm}}^{\text{Maximize}} -
369                            \overbrace{E_\textit{Norm}}^{\text{Minimize}} )
370 \end{equation}
371 Then we can select the optimal scaling factor that satisfy
372 EQ~(\ref{eq:max}).  Our objective function can work with any energy model or
373 static power values stored in a data file. Moreover, this function works in
374 optimal way when the energy curve has a convex form over the available frequency scaling
375 factors as shown in~\cite{15,3,19}. 
376
377 \section{Optimal Scaling Factor for Performance and Energy}
378 \label{sec.optim}
379  Algorithm~\ref{EPSA} compute the optimal scaling factor according to the objective function described above.
380 \begin{algorithm}[tp]
381   \caption{Scaling factor selection algorithm}
382   \label{EPSA}
383   \begin{algorithmic}[1]
384     \State  Initialize the variable $Dist=0$
385     \State Set dynamic and static power values.
386     \State Set $P_{states}$ to the number of available frequencies.
387     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
388     \State Set the variable $F_{diff}$ to the difference between two successive frequencies.
389     \For {$i=1$   to   $P_{states} $}
390       \State - $F_{new}=F_{new} - F_{diff} $
391       \State - $S = \frac{F_\textit{max}}{F_\textit{new}}$
392       \State - $S_i = S \cdot \frac{T_1}{T_i}= \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i} \  for \  i=1,...,N$
393       \State - $E_\textit{Norm} = \frac{P_\textit{dyn} \cdot S_i^{-2} \cdot
394                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
395                P_\textit{static} \cdot T_1 \cdot S_i \cdot N  }{
396               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
397               P_\textit{static} \cdot T_1 \cdot N }$
398       \State -  $P_{NormInv}=T_{old}/T_{new}$ 
399       \If{  $(P_{NormInv}-E_{Norm} > Dist$) }
400         \State $S_{optimal} = S$
401         \State $Dist = P_{NormInv} - E_{Norm}$
402       \EndIf
403     \EndFor
404     \State  Return $S_{optimal}$
405   \end{algorithmic}
406 \end{algorithm}
407
408 The proposed algorithm works online during the execution time of the MPI
409 program. It selects the optimal scaling factor after gathering the computation and communication times 
410 from the program after one iteration. Then the program changes the new frequencies of the CPUs according to the computed scaling factors. This algorithm has small execution time
411 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The algorithm complexity is O(F$\cdot$N), 
412 where F is the number of available frequencies and N is the number of computing nodes.  The algorithm is called just 
413 once during the execution of the program. The DVFS algorithm~(\ref{dvfs}) shows where and when the algorithm is called
414 in the MPI program.
415 %\begin{minipage}{\textwidth}
416
417 \begin{algorithm}[tp]
418   \caption{DVFS}
419   \label{dvfs}
420   \begin{algorithmic}[1]
421  \For {$J:=1$ to $Some-Iterations \; $}
422   \State -Computations Section.
423    \State -Communications Section.
424    \If {$(J=1)$} 
425      \State -Gather all times of computation and\par\hspace{13 pt} communication from each node.
426      \State -Call algorithm~\ref{EPSA} with these times.
427      \State -Compute the new frequency from the returned optimal scaling factor.
428      \State -Set the new frequency to the CPU.
429    \EndIf
430 \EndFor
431 \end{algorithmic}
432 \end{algorithm}
433 After obtaining the optimal scaling factor, the program
434 calculates the new frequency $F_i$ for each task proportionally to its time
435 value $T_i$. By substitution of  EQ~(\ref{eq:s}) in EQ~(\ref{eq:si}), we
436 can calculate the new frequency $F_i$ as follows:
437 \begin{equation}
438   \label{eq:fi}
439   F_i = \frac{F_\textit{max} \cdot T_i}{S_\textit{optimal} \cdot T_\textit{max}}
440 \end{equation}
441 According to this equation all the nodes may have the same frequency value if
442 they have balanced workloads, otherwise, they take different frequencies when
443 having imbalanced workloads. Thus, EQ~(\ref{eq:fi}) adapts the frequency of the CPU to the nodes' workloads to maintain performance.
444
445 \section{Experimental Results}
446 \label{sec.expe}
447 Our experiments are executed on the simulator SimGrid/SMPI
448 v3.10. We configure the simulator to use a a homogeneous cluster with one core per
449 node. The
450 detailed characteristics of our platform file are shown in the
451 table~(\ref{table:platform}).
452 Each node in the cluster has 18 frequency values
453 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
454 frequencies. The simulated network link is 1 GB Ethernet (TCP/IP). 
455 The backbone of the cluster simulates a high performance switch.
456 \begin{table}[htb]
457   \caption{Platform File Parameters}
458   % title of Table
459   \centering
460   \begin{tabular}{|*{7}{l|}}
461     \hline
462     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
463     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
464     \np{2.5} & \np{800} & \np[GBps]{2.25} &\np[$\mu$s]{0.5}& \np[GBps]{1} & \np[$\mu$s]{50} &Full  \\
465     GHz& MHz&  & & &  &Duplex  \\\hline
466   \end{tabular}
467   \label{table:platform}
468 \end{table}
469 \subsection{Performance Prediction Verification}
470
471 In this section we evaluate the precision of our performance prediction method based on EQ~(\ref{eq:tnew}) by applying it the NAS benchmarks. The NAS programs are executed with the class B option for comparing the
472 real execution time with the predicted execution time. Each program runs offline
473 with all available scaling factors on 8 or 9 nodes (depending on the benchmark) to produce real execution
474 time values. These scaling factors are computed by dividing the maximum
475 frequency by the new one see EQ~(\ref{eq:s}). 
476 \begin{figure*}[t]
477   \centering
478   \includegraphics[width=.4\textwidth]{cg_per.eps}\qquad%
479   \includegraphics[width=.4\textwidth]{mg_pre.eps}
480   \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
481   \includegraphics[width=.4\textwidth]{lu_pre.eps}
482   \caption{Comparing predicted to real execution time}
483   \label{fig:pred}
484 \end{figure*}
485 %see Figure~\ref{fig:pred}
486 In our cluster there are 18 available frequency states for each processor. 
487 This lead to 18 run states for each program. We use seven MPI programs of the
488  NAS parallel benchmarks: CG, MG, EP, FT, BT, LU
489 and SP. Figure~(\ref{fig:pred}) presents plots of the real execution times and the simulated ones. The average normalized errors between the predicted execution time and
490 the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. 
491 \JC{why compute the average error not the max}
492 \subsection{The  experimental results}
493 The proposed algorithm was applied to seven MPI programs of the NAS
494 benchmarks (EP, CG, MG, FT, BT, LU and SP) which were run with three classes (A, B and
495 C). For each instance the benchmarks were executed on a number of processors
496 proportional to the size of the class.  Each class represents the problem size
497 ascending from the class A to C. Additionally, depending on some speed up points
498 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
499 respectively. 
500 Depending on EQ~(\ref{eq:energy}), we measure the energy consumption for all
501 the NAS MPI programs while assuming the power dynamic with the highest frequency is equal to \np[W]{20} and
502 the power static is equal to \np[W]{4} for all experiments. These power values were also
503 used by Rauber and Rünger in~\cite{3}.   The results showed that the algorithm selected
504 different scaling factors for each program depending on the communication
505 features of the program as in the plots~(\ref{fig:nas}). These plots illustrate that
506 there are different distances between the normalized energy and the normalized
507 inverted performance curves, because there are different communication features
508 for each benchmark.  When there are little or not communications, the inverted
509 performance curve is very close to the energy curve. Then the distance between
510 the two curves is very small. This leads to small energy savings. The opposite
511 happens when there are a lot of communication, the distance between the two
512 curves is big.  This leads to more energy savings (e.g. CG and FT), see
513 table~(\ref{table:factors results}). All discovered frequency scaling factors
514 optimize both the energy and the performance simultaneously for all  NAS
515 benchmarks. In table~(\ref{table:factors results}), we record all optimal scaling
516 factors results for each benchmark running class C. These scaling factors give the maximum
517 energy saving percent and the minimum performance degradation percent at the
518 same time from all available scaling factors.
519 \begin{figure*}[t]
520   \centering
521   \includegraphics[width=.33\textwidth]{ep.eps}\hfill%
522   \includegraphics[width=.33\textwidth]{cg.eps}\hfill%
523   \includegraphics[width=.33\textwidth]{sp.eps}
524   \includegraphics[width=.33\textwidth]{lu.eps}\hfill%
525   \includegraphics[width=.33\textwidth]{bt.eps}\hfill%
526   \includegraphics[width=.33\textwidth]{ft.eps}
527   \caption{Optimal scaling factors for The parallel NAS benchmarks}
528   \label{fig:nas}
529 \end{figure*}
530 \begin{table}[htb]
531   \caption{The Scaling Factors Results}
532   % title of Table
533   \centering
534   \begin{tabular}{|l|*{4}{r|}}
535     \hline
536     Program & Optimal & Energy  & Performance&Energy-Perf.\\
537     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
538     CG & 1.56 &39.23&14.88 &24.35\\ \hline
539     MG & 1.47 &34.97&21.70 &13.27 \\ \hline
540     EP & 1.04 &22.14&20.73 &1.41\\ \hline
541     LU & 1.38 &35.83&22.49 &13.34\\ \hline
542     BT & 1.31 &29.60&21.28 &8.32\\ \hline
543     SP & 1.38 &33.48&21.36 &12.12\\ \hline
544     FT & 1.47 &34.72&19.00 &15.72\\ \hline
545   \end{tabular} 
546   \label{table:factors results}
547   % is used to refer this table in the text
548 \end{table}
549 As shown in the table~(\ref{table:factors results}), when the optimal scaling
550 factor has big value we can gain more energy savings for example as in CG and
551 FT. The opposite happens when the optimal scaling factor is small value as
552 example BT and EP. Our algorithm selects big scaling factor value when the
553 communication and the other slacks times are big and smaller ones in opposite
554 cases. In EP there are no communications inside the iterations. This make our
555 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
556
557 \subsection{Comparing Results}
558
559 In this section, we compare our scaling factor selection method with Rauber and Rünger
560 methods~\cite{3}. They had two scenarios, the first is to reduce energy to the
561 optimal level without considering the performance as in EQ~(\ref{eq:sopt}). We
562 refer to this scenario as $R_{E}$. The second scenario is similar to the first
563 except setting the slower task to the maximum frequency (when the scale $S=1$)
564 to keep the performance from degradation as mush as possible. We refer to this
565 scenario as $R_{E-P}$. The comparison is made in tables~(\ref{table:compareA},
566 \ref{table:compareB}, and \ref{table:compareC}). These
567 tables show the results of our method and Rauber and Rünger scenarios for all the
568 NAS benchmarks programs for classes A,B and C.
569 \begin{table}[p]
570   \caption{Comparing Results for  The NAS Class A}
571   % title of Table
572   \centering
573   \begin{tabular}{|l|l|*{4}{r|}}
574     \hline
575     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
576     Name &Name&Value& Saving \%&Degradation \% &Distance
577     \\ \hline
578     % \rowcolor[gray]{0.85}
579     $EPSA$&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
580     $R_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.50\\ \hline
581     $R_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
582
583     $EPSA$&MG & 1.47 &27.66&16.82&10.84\\ \hline
584     $R_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
585     $R_{E}$&MG &2.14&34.48&33.65&0.80 \\ \hline
586
587     $EPSA$&EP &1.19 &25.32&20.79&4.53\\ \hline
588     $R_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
589     $R_{E}$&EP&2.05&42.09&57.59&-15.50\\ \hline
590
591     $EPSA$&LU&1.56& 39.55 &19.38& 20.17\\ \hline
592     $R_{E-P}$&LU&2.14&45.62&27.00&18.62 \\ \hline
593     $R_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
594
595     $EPSA$&BT&1.31& 29.60&20.53&9.07 \\ \hline
596     $R_{E-P}$&BT&2.10&45.53&49.63&-4.10\\ \hline
597     $R_{E}$&BT&2.10&43.93&52.86&-8.93\\ \hline
598
599     $EPSA$&SP&1.38& 33.51&15.65&17.86 \\ \hline
600     $R_{E-P}$&SP&2.11&45.62&42.52&3.10\\ \hline
601     $R_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
602
603     $EPSA$&FT&1.25&25.00&10.80&14.20 \\ \hline
604     $R_{E-P}$&FT&2.10&39.29&34.30&4.99 \\ \hline
605     $R_{E}$&FT&2.10&37.56&38.21&-0.65\\ \hline
606   \end{tabular}
607   \label{table:compareA}
608   % is used to refer this table in the text
609 \end{table}
610 \begin{table}[p]
611   \caption{Comparing Results for The NAS Class B}
612   % title of Table
613   \centering
614   \begin{tabular}{|l|l|*{4}{r|}}
615     \hline
616     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
617     Name &Name&Value& Saving \%&Degradation \% &Distance
618     \\ \hline
619     % \rowcolor[gray]{0.85}
620     $EPSA$&CG & 1.66 &39.23&16.63&22.60   \\ \hline
621     $R_{E-P}$&CG &2.15 &45.34&27.60&17.74\\ \hline
622     $R_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
623
624     $EPSA$ &MG & 1.47 &34.98&18.35&16.63\\ \hline
625     $R_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
626     $R_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
627
628     $EPSA$&EP &1.08 &20.29&17.15&3.14 \\ \hline
629     $R_{E-P}$&EP&2.00&42.38&56.88&-14.50\\ \hline
630     $R_{E}$&EP&2.00&39.73&59.94&-20.21\\ \hline
631
632     $EPSA$&LU&1.47&38.57&21.34&17.23 \\ \hline
633     $R_{E-P}$&LU&2.10&43.62&36.51&7.11 \\ \hline
634     $R_{E}$&LU&2.10&43.61&38.54&5.07 \\ \hline
635
636     $EPSA$&BT&1.31& 29.59&20.88&8.71\\ \hline
637     $R_{E-P}$&BT&2.10&44.53&53.05&-8.52\\ \hline
638     $R_{E}$&BT&2.10&42.93&52.80&-9.87\\ \hline
639
640     $EPSA$&SP&1.38&33.44&19.24&14.20 \\ \hline
641     $R_{E-P}$&SP&2.15&45.69&43.20&2.49\\ \hline
642     $R_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
643
644     $EPSA$&FT&1.38&34.40&14.57&19.83 \\ \hline
645     $R_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
646     $R_{E}$&FT&2.13&43.04&37.90&5.14\\ \hline
647   \end{tabular}
648   \label{table:compareB}
649   % is used to refer this table in the text
650 \end{table}
651
652 \begin{table}[p]
653   \caption{Comparing Results for The NAS Class C}
654   % title of Table
655   \centering
656   \begin{tabular}{|l|l|*{4}{r|}}
657     \hline
658     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
659     Name &Name&Value& Saving \%&Degradation \% &Distance
660     \\ \hline
661     % \rowcolor[gray]{0.85}
662     $EPSA$&CG & 1.56 &39.23&14.88&24.35  \\ \hline
663     $R_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
664     $R_{E}$&CG &2.15 &45.36&26.70&18.66\\ \hline
665
666     $EPSA$&MG & 1.47 &34.97&21.69&13.27\\ \hline
667     $R_{E-P}$&MG &2.15&43.65&40.45&3.20 \\ \hline
668     $R_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
669
670     $EPSA$&EP &1.04 &22.14&20.73&1.41 \\ \hline
671     $R_{E-P}$&EP&1.92&39.40&56.33&-16.93\\ \hline
672     $R_{E}$&EP&1.92&38.10&56.35&-18.25\\ \hline
673
674     $EPSA$&LU&1.38&35.83&22.49&13.34 \\ \hline
675     $R_{E-P}$&LU&2.15&44.97&41.00&3.97 \\ \hline
676     $R_{E}$&LU&2.15&44.97&41.80&3.17 \\ \hline
677
678     $EPSA$&BT&1.31& 29.60&21.28&8.32\\ \hline
679     $R_{E-P}$&BT&2.13&45.60&49.84&-4.24\\ \hline
680     $R_{E}$&BT&2.13&44.90&55.16&-10.26\\ \hline
681
682     $EPSA$&SP&1.38&33.48&21.35&12.12\\ \hline
683     $R_{E-P}$&SP&2.10&45.69&43.60&2.09\\ \hline
684     $R_{E}$&SP&2.10&45.75&44.10&1.65\\ \hline
685
686     $EPSA$&FT&1.47&34.72&19.00&15.72 \\ \hline
687     $R_{E-P}$&FT&2.04&39.40&37.10&2.30\\ \hline
688     $R_{E}$&FT&2.04&39.35&37.70&1.65\\ \hline
689   \end{tabular}
690 \label{table:compareC}
691 % is used to refer this table in the text
692 \end{table}
693 As shown in tables~\ref{table:compareA},~\ref{table:compareB} and~\ref{table:compareC}, the ($R_{E-P}$) method outperforms the ($R_{E}$) method in terms of performance and energy reduction. The ($R_{E-P}$) method also gives better energy savings than our method. However, although our scaling factor is not optimal for energy reduction, the results in these tables prove that our algorithm returns the best scaling factor that satisfy our objective method : the largest distance between energy reduction and performance degradation. 
694
695 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
696 percent and the performance degradation percent.  
697 Negative values mean that one of the two objectives (energy or performance) have been degraded more than the other. The positive tradeoffs with the highest values lead to maximum energy savings
698 while keeping the performance degradation as low as possible. Our algorithm always
699 gives the highest positive energy to performance tradeoffs while Rauber and Rünger method
700 ($R_{E-P}$) gives in some time negative tradeoffs such as in BT and
701 EP.
702 \begin{figure}[t]
703   \centering
704   \includegraphics[width=.33\textwidth]{compare_class_A.pdf}
705   \includegraphics[width=.33\textwidth]{compare_class_B.pdf}
706   \includegraphics[width=.33\textwidth]{compare_class_c.pdf}
707   \caption{Comparing our method to Rauber and Rünger Methods}
708   \label{fig:compare}
709 \end{figure}
710 \section{Conclusion}
711 \label{sec.concl}
712 In this paper, we have presented a new online scaling factor selection method that optimizes simultaneously the energy and performance of a distributed application running on an homogeneous cluster. It uses the computation and communication times measured at the first iteration to predict energy consumption and the performance of the parallel application at every available frequency. Then, it selects the scaling factor that gives the best tradeoff between energy reduction and performance which is the maximum distance between the energy and the inverted performance curves. To evaluate this method, we have applied it to the NAS benchmarks and it was compared to Rauber's methods while being executed on the simulator SimGrid. The results showed that our method, outperforms Rauber's methods in terms of energy-performance ratio. 
713
714 In the near future, we would like to adapt this scaling factor selection method to heterogeneous platforms where each node has different characteristics. In particular, each CPU has different available frequencies, energy consumption and performance. It would be also interesting to develop a new energy model for asynchronous parallel iterative methods where the number of iterations is not known in advance and depends on the global convergence of the iterative system.
715
716
717 \section*{Acknowledgment}
718 As a PhD student, M. Ahmed Fanfakh, would like to thank the University of
719 Babylon (Iraq) for supporting his work.
720
721 \JC{delete the online paths for each reference\AG{except for TOP500 and the NPB}}
722 % trigger a \newpage just before the given reference
723 % number - used to balance the columns on the last page
724 % adjust value as needed - may need to be readjusted if
725 % the document is modified later
726 %\IEEEtriggeratref{15}
727
728 \bibliographystyle{IEEEtran}
729 \bibliography{IEEEabrv,my_reference}
730 \end{document}
731
732 %%% Local Variables:
733 %%% mode: latex
734 %%% TeX-master: t
735 %%% fill-column: 80
736 %%% ispell-local-dictionary: "american"
737 %%% End:
738
739 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
740 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger