]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
babc12bd7f1c1a0ec283443a6f9d3780cf82597f
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 % \usepackage{sectsty}
13 % \usepackage{titlesec}
14 % \usepackage{secdot}
15 %\usepackage[font={footnotesize,bt}]{caption}
16 %\usepackage[font=scriptsize,labelfont=bf]{caption}
17 \usepackage{todonotes}
18 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\small\textbf{AG:} #2}}
19
20 \begin{document}
21
22 \title{Optimal Dynamic Frequency Scaling for Energy-Performance of Parallel MPI Programs}
23
24 \author{%
25   \IEEEauthorblockN{%
26     Ahmed Badri,
27     Jean-Claude Charr,
28     Raphaël Couturier and
29     Arnaud Giersch
30   }
31   \IEEEauthorblockA{%
32     FEMTO-ST Institute\\
33     University of Franche-Comté
34   }
35 }
36
37 \maketitle
38
39 \AG{``Optimal'' is a bit pretentious in the title}
40
41 \begin{abstract}
42   \AG{complete the abstract\dots}
43 \end{abstract}
44
45 \section{Introduction}
46
47 The need for computing power is still increasing and it is not expected to slow
48 down in the coming years. To satisfy this demand, researchers and supercomputers
49 constructors have been regularly increasing the number of computing cores in
50 supercomputers (for example in November 2013, according to the top 500
51 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
52 millions of cores and delivers more than 33 Tflop/s while consuming 17808
53 kW). This large increase in number of computing cores has led to large energy
54 consumption by these architectures. Moreover, the price of energy is expected to
55 continue its ascent according to the demand. For all these reasons energy
56 reduction became an important topic in the high performance computing field. To
57 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
58 Scaling) operations which reduce dynamically the frequency and voltage of cores
59 and thus their energy consumption. However, this operation also degrades the
60 performance of computation. Therefore researchers try to reduce the frequency to
61 minimum when processors are idle (waiting for data from other processors or
62 communicating with other processors). Moreover, depending on their objectives
63 they use heuristics to find the best scaling factor during the computation. If
64 they aim for performance they choose the best scaling factor that reduces the
65 consumed energy while affecting as little as possible the performance. On the
66 other hand, if they aim for energy reduction, the chosen scaling factor must
67 produce the most energy efficient execution without considering the degradation
68 of the performance. It is important to notice that lowering the frequency to
69 minimum value does not always give the most efficient execution due to energy
70 leakage. The best scaling factor might be chosen during execution (online) or
71 during a pre-execution phase.  In this paper we emphasize to develop an
72 algorithm that selects the optimal frequency scaling factor that takes into
73 consideration simultaneously the energy consumption and the performance. The
74 main objective of HPC systems is to run the application with less execution
75 time. Therefore, our algorithm selects the optimal scaling factor online with
76 very small footprint. The proposed algorithm takes into account the
77 communication times of the MPI programs to choose the scaling factor. This
78 algorithm has ability to predict both energy consumption and execution time over
79 all available scaling factors.  The prediction achieved depends on some
80 computing time information, gathered at the beginning of the runtime.  We apply
81 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
82 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
83 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
84 over an homogeneous distributed memory architecture. Furthermore, we compare the
85 proposed algorithm with Rauber's methods. The comparison's results show that our
86 algorithm gives better energy-time trade off.
87
88 \section{Related Works}
89
90 In the this section some heuristics, to compute the scaling factor, are
91 presented and classified in two parts : offline and online methods.
92
93 \subsection{The offline DVFS orientations}
94
95 The DVFS offline methods are static and are not executed during the runtime of
96 the program. Some approaches used heuristics to select the best DVFS state
97 during the compilation phases as an example in Azevedo et al.~\cite{40}. He used
98 intra-task algorithm to choose the DVFS setting when there are dependency points
99 between tasks. While in~\cite{29}, Xie et al. used breadth-first search
100 algorithm to do that. Their goal is saving energy with time limits. Another
101 approaches gathers and stores the runtime information for each DVFS state, then
102 used their methods offline to select the suitable DVFS that optimize energy-time
103 trade offs. As an example~\cite{8}, Rountree et al. used liner programming
104 algorithm, while in~\cite{38,34}, Cochran et al. used multi logistic regression
105 algorithm for the same goal. The offline study that shown the DVFS impact on the
106 communication time of the MPI program is~\cite{17}, Freeh et al. show that these
107 times not changed when the frequency is scaled down.
108
109 \subsection{The online DVFS orientations}
110
111 The objective of these works is to dynamically compute and set the frequency of
112 the CPU during the runtime of the program for saving energy. Estimating and
113 predicting approaches for the energy-time trade offs developed by
114 ~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
115 times. These times happen when the processors have to wait for data from other
116 processors to compute their task. For example, during the synchronous
117 communication time that take place in the MPI programs, the processors are
118 idle. The optimal DVFS can be selected using the learning methods. Therefore, in
119 ~\cite{39,19} used machine learning to converge to the suitable DVFS
120 configuration. Their learning algorithms have big time to converge when the
121 number of available frequencies is high. Also, the communication time of the MPI
122 program used online for saving energy as in~\cite{1}, Lim et al. developed an
123 algorithm that detects the communication sections and changes the frequency
124 during these sections only. This approach changes the frequency many times
125 because an iteration may contain more than one communication section. The domain
126 of analytical modeling used for choosing the optimal frequency as in~\cite{3},
127 Rauber et al. developed an analytical mathematical model for determining the
128 optimal frequency scaling factor for any number of concurrent tasks, without
129 considering communication times. They set the slowest task to maximum frequency
130 for maintaining performance.  In this paper we compare our algorithm with
131 Rauber's model~\cite{3}, because his model can be used for any number of
132 concurrent tasks for homogeneous platform and this is the same direction of this
133 paper.  However, the primary contributions of this paper are:
134 \begin{enumerate}
135 \item Selecting the optimal frequency scaling factor for energy and performance
136   simultaneously. While taking into account the communication time.
137 \item Adapting our scale factor to taking into account the imbalanced tasks.
138 \item The execution time of our algorithm is very small when compared to other
139   methods (e.g.,~\cite{19}).
140 \item The proposed algorithm works online without profiling or training as
141   in~\cite{38,34}.
142 \end{enumerate}
143
144 \section{Parallel Tasks Execution on Homogeneous Platform}
145
146 A homogeneous cluster consists of identical nodes in terms of the hardware and
147 the software. Each node has its own memory and at least one processor which can
148 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
149 executed on this model can be either synchronous or asynchronous. In this paper
150 we consider execution of the synchronous tasks on distributed homogeneous
151 platform. These tasks can exchange the data via synchronous memory passing.
152 \begin{figure*}[t]
153   \centering
154   \subfloat[Synch. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
155   \subfloat[Synch. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
156   \caption{Parallel Tasks on Homogeneous Platform}
157   \label{fig:homo}
158 \end{figure*}
159 Therefore, the execution time of a task consists of the computation time and the
160 communication time. Moreover, the synchronous communications between tasks can
161 lead to idle time while tasks wait at the synchronous point for others tasks to
162 finish their communications see figure~(\ref{fig:h1}).  Another source for idle
163 times is the imbalanced computations. This happen when processing different
164 amounts of data on each processor as an example see figure~(\ref{fig:h2}). In
165 this case the fastest tasks have to wait at the synchronous barrier for the
166 slowest tasks to finish their job. In both two cases the overall execution time
167 of the program is the execution time of the slowest task as :
168 \begin{equation}
169   \label{eq:T1}
170   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
171 \end{equation}
172 where $T_i$ is the execution time of process $i$.
173
174 \section{Energy Model for Homogeneous Platform}
175
176 The energy consumption by the processor consists of two powers metric: the
177 dynamic and the static power. This general power formulation is used by many
178 researchers see~\cite{9,3,15,26}. The dynamic power of the CMOS processors
179 $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
180 the supply voltage $V$ and operational frequency $f$ respectively as follow :
181 \begin{equation}
182   \label{eq:pd}
183   P_{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
184 \end{equation}
185 The static power $P_{static}$ captures the leakage power consumption as well as
186 the power consumption of peripheral devices like the I/O subsystem.
187 \begin{equation}
188   \label{eq:ps}
189   P_{static}  = V \cdot N \cdot K_{design} \cdot I_{leak}
190 \end{equation}
191 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
192 design dependent parameter and $I_{leak}$ is a technology-dependent
193 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
194 of the dynamic and the static power multiply by the execution time for example
195 see~\cite{36,15} .
196 \begin{equation}
197   \label{eq:eind}
198   E_{ind} = ( P_{dyn} + P_{static} ) \cdot T
199 \end{equation}
200 The dynamic voltage and frequency scaling (DVFS) is a process that allowed in
201 modern processors to reduce the dynamic power by scaling down the voltage and
202 frequency. Its main objective is to reduce the overall energy
203 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
204 supply voltage $V$, i.e., $V = \beta . f$ with some constant $\beta$. This
205 equation is used to study the change of the dynamic voltage with respect to
206 various frequency values in~\cite{3}. The reduction process of the frequency are
207 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
208 maximum and the new frequency as in EQ~(\ref{eq:s}).
209 \begin{equation}
210   \label{eq:s}
211   S = \frac{F_{max}}{F_{new}}
212 \end{equation}
213 The value of the scale \emph S is grater than 1 when changing the frequency to
214 any new frequency value(\emph {P-state}) in governor. It is equal to 1 when the
215 frequency are set to the maximum frequency.  The energy consumption model for
216 parallel homogeneous platform is depending on the scaling factor \emph S. This
217 factor reduces quadratically the dynamic power.  Also, this factor increases the
218 static energy linearly because the execution time is increased~\cite{36}.  The
219 energy model, depending on the frequency scaling factor, of homogeneous platform
220 for any number of concurrent tasks develops by Rauber~\cite{3}. This model
221 consider the two powers metric for measuring the energy of the parallel tasks as
222 in EQ~(\ref{eq:energy}).
223
224 \begin{equation}
225   \label{eq:energy}
226   E = P_{dyn} \cdot S_1^{-2} \cdot
227     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
228     P_{static} \cdot T_1 \cdot S_1 \cdot N
229  \hfill
230 \end{equation}
231 Where \emph N is the number of parallel nodes, $T_1 $ is the time of the slower
232 task, $T_i$ is the time of the task $i$ and $S_1$ is the maximum scaling factor
233 for the slower task. The scaling factor $S_1$, as in EQ~(\ref{eq:s1}), selects
234 from the set of scales values $S_i$. Each of these scales are proportional to
235 the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
236 \begin{equation}
237   \label{eq:s1}
238   S_1 = \max_{i=1,2,\dots,F} S_i
239 \end{equation}
240 \begin{equation}
241   \label{eq:si}
242   S_i = S \cdot \frac{T_1}{T_i}
243       = \frac{F_{max}}{F_{new}} \cdot \frac{T_1}{T_i}
244 \end{equation}
245 Where $F$ is the number of available frequencies. In this paper we depend on
246 Rauber's energy model EQ~(\ref{eq:energy}) for two reasons : 1-this model used
247 for homogeneous platform that we work on in this paper. 2-we are compare our
248 algorithm with Rauber's scaling model.  Rauber's optimal scaling factor for
249 optimal energy reduction derived from the EQ~(\ref{eq:energy}). He takes the
250 derivation for this equation (to be minimized) and set it to zero to produce the
251 scaling factor as in EQ~(\ref{eq:sopt}).
252 \begin{equation}
253   \label{eq:sopt}
254   S_{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_{dyn}}{P_{static}} \cdot
255     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
256 \end{equation}
257
258 \section{Performance Evaluation of MPI Programs}
259
260 The performance (execution time) of the parallel MPI applications are depends on
261 the time of the slowest task as in figure~(\ref{fig:homo}). Normally the
262 execution time of the parallel programs are proportional to the operational
263 frequency. Therefore, any DVFS operation for the energy reduction increase the
264 execution time of the parallel program. As shown in EQ~(\ref{eq:energy}) the
265 energy affected by the scaling factor $S$. This factor also has a great impact
266 on the performance. When scaling down the frequency to the new value according
267 to EQ~(\ref{eq:s}) lead to the value of the scale $S$ has inverse relation with
268 new frequency value ($S \propto \frac{1}{F_{new}}$). Also when decrease the
269 frequency value, the execution time increase. Then the new frequency value has
270 inverse relation with time ($F_{new} \propto \frac{1}{T}$). This lead to the
271 frequency scaling factor $S$ proportional linearly with execution time ($S
272 \propto T$). Large scale MPI applications such as NAS benchmarks have
273 considerable amount of communications embedded in these programs. During the
274 communication process the processor remain idle until the communication has
275 finished. For that reason any change in the frequency has no impact on the time
276 of communication but it has obvious impact on the time of
277 computation~\cite{17}. We are made many tests on real cluster to prove that the
278 frequency scaling factor \emph S has a linear relation with computation time
279 only also see~\cite{41}. To predict the execution time of MPI program, firstly
280 must be precisely specifying communication time and the computation time for the
281 slower task. Secondly, we use these times for predicting the execution time for
282 any MPI program as a function of the new scaling factor as in the
283 EQ~(\ref{eq:tnew}).
284 \begin{equation}
285   \label{eq:tnew}
286   T_{new} = T_{\textit{Max Comp Old}} \cdot S + T_{\textit{Max Comm Old}}
287 \end{equation}
288 The above equation shows that the scaling factor \emph S has linear relation
289 with the computation time without affecting the communication time. The
290 communication time consists of the beginning times which an MPI calls for
291 sending or receiving till the message is synchronously sent or received. In this
292 paper we predict the execution time of the program for any new scaling factor
293 value. Depending on this prediction we can produce our energy-performance scaling
294 method as we will show in the coming sections. In the next section we make an
295 investigation study for the EQ~(\ref{eq:tnew}).
296
297 \section{Performance Prediction Verification}
298
299 In this section we evaluate the precision of our performance prediction methods
300 on the NAS benchmark. We use the EQ~(\ref{eq:tnew}) that predicts the execution
301 time for any scale value. The NAS programs run the class B for comparing the
302 real execution time with the predicted execution time. Each program runs offline
303 with all available scaling factors on 8 or 9 nodes to produce real execution
304 time values. These scaling factors are computed by dividing the maximum
305 frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
306 SimGrid/SMPI v3.10 to run the NAS programs.
307 \begin{figure*}[t]
308   \centering
309   \includegraphics[width=.4\textwidth]{cg_per.eps}\qquad%
310   \includegraphics[width=.4\textwidth]{mg_pre.eps}
311   \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
312   \includegraphics[width=.4\textwidth]{lu_pre.eps}
313   \caption{Fitting Predicted to Real Execution Time}
314   \label{fig:pred}
315 \end{figure*}
316 %see Figure~\ref{fig:pred}
317 In our cluster there are 18 available frequency states for each processor from
318 2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
319 frequencies. For more details on the characteristics of the platform refer to
320 table~(\ref{table:platform}). This lead to 18 run states for each program. We
321 use seven MPI programs of the NAS parallel benchmarks : CG, MG, EP, FT, BT, LU
322 and SP. The average normalized errors between the predicted execution time and
323 the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. AS an
324 example, we are present the execution times of the NAS benchmarks as in the
325 figure~(\ref{fig:pred}).
326
327 \section{Performance to Energy Competition}
328 This section demonstrates our approach for choosing the optimal scaling
329 factor. This factor gives maximum energy reduction taking into account the
330 execution time for both computation and communication times . The relation
331 between the energy and the performance are nonlinear and complex, because the
332 relation of the energy with scaling factor is nonlinear and with the performance
333 it is linear see~\cite{17}. The relation between the energy and the performance
334 is not straightforward. Moreover, they are not measured using the same metric.
335 For solving this problem, we normalize the energy by calculating the ratio
336 between the consumed energy with scaled frequency and the consumed energy
337 without scaled frequency :
338 \begin{multline}
339   \label{eq:enorm}
340   E_\textit{Norm} = \frac{E_{Reduced}}{E_{Original}}\\
341   {} = \frac{ P_{dyn} \cdot S_i^{-2} \cdot
342                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
343                P_{static} \cdot T_1 \cdot S_i \cdot N  }{
344               P_{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
345               P_{static} \cdot T_1 \cdot N }
346 \end{multline}
347 \AG{Use \texttt{\textbackslash{}text\{xxx\}} or
348   \texttt{\textbackslash{}textit\{xxx\}} for all subscripted words in equations
349   (e.g. \mbox{\texttt{E\_\{\textbackslash{}text\{Norm\}\}}}).
350
351   Don't hesitate to define new commands :
352   \mbox{\texttt{\textbackslash{}newcommand\{\textbackslash{}ENorm\}\{E\_\{\textbackslash{}text\{Norm\}\}\}}}
353 }
354 By the same way we can normalize the performance as follows :
355 \begin{equation}
356   \label{eq:pnorm}
357   P_{Norm} = \frac{T_{New}}{T_{Old}}
358           = \frac{T_{\textit{Max Comp Old}} \cdot S +
359               T_{\textit{Max Comm Old}}}{T_{Old}}
360 \end{equation}
361 The second problem is the optimization operation for both energy and performance
362 is not in the same direction. In other words, the normalized energy and the
363 performance curves are not in the same direction see figure~(\ref{fig:r2}).
364 While the main goal is to optimize the energy and performance in the same
365 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
366 scaling factor \emph S reduce both the energy and the performance
367 simultaneously. But the main objective is to produce maximum energy reduction
368 with minimum performance reduction. Many researchers used different strategies
369 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
370 big overhead to the algorithm for selecting the suitable frequency. In this
371 paper we are present a method to find the optimal scaling factor \emph S for
372 optimize both energy and performance simultaneously without adding big
373 overheads.  Our solution for this problem is to make the optimization process
374 have the same direction. Therefore, we inverse the equation of normalize
375 performance as follows :
376 \begin{equation}
377   \label{eq:pnorm_en}
378   P^{-1}_{Norm} = \frac{T_{Old}}{T_{New}}
379                = \frac{T_{Old}}{T_{\textit{Max Comp Old}} \cdot S +
380                  T_{\textit{Max Comm Old}}}
381 \end{equation}
382 \begin{figure*}
383   \centering
384   \subfloat[Converted Relation.]{%
385     \includegraphics[width=.4\textwidth]{file.eps}\label{fig:r1}}%
386   \qquad%
387   \subfloat[Real Relation.]{%
388     \includegraphics[width=.4\textwidth]{file3.eps}\label{fig:r2}}
389   \label{fig:rel}
390   \caption{The Energy and Performance Relation}
391 \end{figure*}
392 Then, we can modelize our objective function as finding the maximum distance
393 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
394 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
395 the minimum energy consumption with minimum execution time (better performance)
396 in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
397 following form:
398 \begin{equation}
399   \label{eq:max}
400   \textit{MaxDist} = \max (\overbrace{P^{-1}_{Norm}}^{\text{Maximize}} -
401                            \overbrace{E_{Norm}}^{\text{Minimize}} )
402 \end{equation}
403 Then we can select the optimal scaling factor that satisfy the
404 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
405 static power values stored in a data file. Moreover, this function works in
406 optimal way when the energy function has a convex form with frequency scaling
407 factor as shown in~\cite{15,3,19}. Energy measurement model is not the
408 objective of this paper and we choose Rauber's model as an example with two
409 reasons that mentioned before.
410
411 \section{Optimal Scaling Factor for Performance and Energy}
412
413 In the previous section we described the objective function that satisfy our
414 goal in discovering optimal scaling factor for both performance and energy at
415 the same time. Therefore, we develop an energy to performance scaling algorithm
416 (EPSA). This algorithm is simple and has a direct way to calculate the optimal
417 scaling factor for both energy and performance at the same time.
418 \begin{algorithm}[tp]
419   \caption{EPSA}
420   \label{EPSA}
421   \begin{algorithmic}[1]
422     \State  Initialize the variable $Dist=0$
423     \State Set dynamic and static power values.
424     \State Set $P_{states}$ to the number of available frequencies.
425     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
426     \State Set the variable $F_{diff}$ to the scale value between each two frequencies.
427     \For {$i=1$   to   $P_{states} $}
428       \State - Calculate the new frequency as $F_{new}=F_{new} - F_{diff} $
429       \State - Calculate the scale factor $S$ as in EQ~(\ref{eq:s}).
430       \State - Calculate all available scales $S_i$  depend on $S$ as in EQ~(\ref{eq:si}).
431       \State - Select the maximum scale factor $S_1$ from the set of scales $S_i$.
432       \State - Calculate the normalize energy $E_{Norm}=E_{R}/E_{O}$ as in EQ~(\ref{eq:enorm}).
433       \State - Calculate the normalize inverse of performance\par
434                $P_{NormInv}=T_{old}/T_{new}$ as in EQ~(\ref{eq:pnorm_en}).
435       \If{  $(P_{NormInv}-E_{Norm} > Dist$) }
436         \State $S_{optimal} = S$
437         \State $Dist = P_{NormInv} - E_{Norm}$
438       \EndIf
439     \EndFor
440     \State  Return $S_{optimal}$
441   \end{algorithmic}
442 \end{algorithm}
443 The proposed EPSA algorithm works online during the execution time of the MPI
444 program. It selects the optimal scaling factor by gathering some information
445 from the program after one iteration. This algorithm has small execution time
446 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The data
447 required by this algorithm is the computation time and the communication time
448 for each task from the first iteration only. When these times are measured, the
449 MPI program calls the EPSA algorithm to choose the new frequency using the
450 optimal scaling factor. Then the program set the new frequency to the
451 system. The algorithm is called just one time during the execution of the
452 program. The DVFS algorithm~(\ref{dvfs}) shows where and when the EPSA algorithm is called
453 in the MPI program.
454 %\begin{minipage}{\textwidth}
455 %\AG{Use the same format as for Algorithm~\ref{EPSA}}
456
457 \begin{algorithm}[tp]
458   \caption{DVFS}
459   \label{dvfs}
460   \begin{algorithmic}
461  \For {$J:=1$ to $Some-Iterations \; $}
462   \State -Computations Section.
463    \State -Communications Section.
464    \If {$(J==1)$} 
465      \State -Gather all times of computation and\par
466         \State      communication from each node.
467      \State -Call EPSA with these times.
468      \State -Calculate the new frequency from optimal scale.
469      \State -Set the new frequency to the system.
470    \EndIf
471 \EndFor
472 \end{algorithmic}
473 \end{algorithm}
474
475 After obtaining the optimal scale factor from the EPSA algorithm. The program
476 calculates the new frequency $F_i$ for each task proportionally to its time
477 value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
478 can calculate the new frequency $F_i$ as follows :
479 \begin{equation}
480   \label{eq:fi}
481   F_i = \frac{F_{max} \cdot T_i}{S_{optimal} \cdot T_{max}}
482 \end{equation}
483 According to this equation all the nodes may have the same frequency value if
484 they have balanced workloads. Otherwise, they take different frequencies when
485 have imbalanced workloads. Then EQ~(\ref{eq:fi}) works in adaptive way to change
486 the frequency according to the nodes workloads.
487
488 \section{Experimental Results}
489
490 The proposed EPSA algorithm was applied to seven MPI programs of the NAS
491 benchmarks (EP, CG, MG, FT, BT, LU and SP). We work on three classes (A, B and
492 C) for each program. Each program runs on specific number of processors
493 proportional to the size of the class.  Each class represents the problem size
494 ascending from the class A to C. Additionally, depending on some speed up points
495 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
496 respectively. Our experiments are executed on the simulator SimGrid/SMPI
497 v3.10. We design a platform file that simulates a cluster with one core per
498 node. This cluster is a homogeneous architecture with distributed memory. The
499 detailed characteristics of our platform file are shown in the
500 table~(\ref{table:platform}). Each node in the cluster has 18 frequency values
501 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
502 frequencies.
503 \begin{table}[ht]
504   \caption{Platform File Parameters}
505   % title of Table
506   \centering
507   \begin{tabular}{ | l | l | l |l | l |l |l |  p{2cm} |}
508     \hline
509     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
510     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
511     2.5 &800 & 2.25 GBps &$5\times 10^{-7} s$& 1 GBps & $5\times 10^{-5}$ s&Full  \\
512     GHz& MHz&  & & &  &Duplex  \\\hline
513   \end{tabular}
514   \label{table:platform}
515 \end{table}
516 Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
517 the NAS MPI programs while assuming the power dynamic is equal to 20W and the
518 power static is equal to 4W for all experiments. We run the proposed EPSA
519 algorithm for all these programs. The results showed that the algorithm selected
520 different scaling factors for each program depending on the communication
521 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
522 there are different distances between the normalized energy and the normalized
523 inversed performance curves, because there are different communication features
524 for each MPI program.  When there are little or not communications, the inversed
525 performance curve is very close to the energy curve. Then the distance between
526 the two curves is very small. This lead to small energy savings. The opposite
527 happens when there are a lot of communication, the distance between the two
528 curves is big.  This lead to more energy savings (e.g. CG and FT), see
529 table~(\ref{table:factors results}). All discovered frequency scaling factors
530 optimize both the energy and the performance simultaneously for all the NAS
531 programs. In table~(\ref{table:factors results}), we record all optimal scaling
532 factors results for each program on class C. These factors give the maximum
533 energy saving percent and the minimum performance degradation percent in the
534 same time over all available scales.
535 \begin{figure*}
536   \centering
537   \includegraphics[width=.33\textwidth]{ep.eps}\hfill%
538   \includegraphics[width=.33\textwidth]{cg.eps}\hfill%
539   \includegraphics[width=.33\textwidth]{sp.eps}
540   \includegraphics[width=.33\textwidth]{lu.eps}\hfill%
541   \includegraphics[width=.33\textwidth]{bt.eps}\hfill%
542   \includegraphics[width=.33\textwidth]{ft.eps}
543   \caption{Optimal scaling factors for The NAS MPI Programs}
544   \label{fig:nas}
545 \end{figure*}
546 \begin{table}
547   \caption{Optimal Scaling Factors Results}
548   % title of Table
549   \centering
550   \AG{Use the same number of decimals for all numbers in a column,
551     and vertically align the numbers along the decimal points.
552     The same for all the following tables.}
553   \begin{tabular}{ | l | l | l |l | l | p{2cm} |}
554     \hline
555     Program & Optimal & Energy  & Performance&Energy-Perf.\\
556     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
557     CG & 1.56 &39.23&14.88 &24.35\\ \hline
558     MG & 1.47 &34.97&21.70 &13.27 \\ \hline
559     EP & 1.04 &22.14&20.73 &1.41\\ \hline
560     LU & 1.38 &35.83&22.49 &13.34\\ \hline
561     BT & 1.31 &29.60&21.28 &8.32\\ \hline
562     SP & 1.38 &33.48&21.36 &12.12\\ \hline
563     FT & 1.47 &34.72&19.00 &15.72\\ \hline
564   \end{tabular}
565   \label{table:factors results}
566   % is used to refer this table in the text
567 \end{table}
568
569 As shown in the table~(\ref{table:factors results}), when the optimal scaling
570 factor has big value we can gain more energy savings for example as in CG and
571 FT. The opposite happens when the optimal scaling factor is small value as
572 example BT and EP. Our algorithm selects big scaling factor value when the
573 communication and the other slacks times are big and smaller ones in opposite
574 cases. In EP there are no communications inside the iterations. This make our
575 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
576
577 \section{Comparing Results}
578
579 In this section, we compare our EPSA algorithm results with Rauber's
580 methods~\cite{3}. He had two scenarios, the first is to reduce energy to optimal
581 level without considering the performance as in EQ~(\ref{eq:sopt}). We refer to
582 this scenario as $Rauber_{E}$. The second scenario is similar to the first
583 except setting the slower task to the maximum frequency (when the scale $S=1$)
584 to keep the performance from degradation as mush as possible. We refer to this
585 scenario as $Rauber_{E-P}$. The comparison is made in tables~(\ref{table:compare
586   Class A},\ref{table:compare Class B},\ref{table:compare Class C}). These
587 tables show the results of our EPSA and Rauber's two scenarios for all the NAS
588 benchmarks programs for classes A,B and C.
589 \begin{table}[ht]
590   \caption{Comparing Results for  The NAS Class A}
591   % title of Table
592   \centering
593   \begin{tabular}{ | l | l | l |l | l | l|  }
594     \hline
595     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
596     name &name&value& Saving \%&Degradation \% &Distance
597     \\ \hline
598     % \rowcolor[gray]{0.85}
599     EPSA&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
600     $Rauber_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.50\\ \hline
601     $Rauber_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
602
603     EPSA&MG & 1.47 &27.66&16.82&10.84\\ \hline
604     $Rauber_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
605     $Rauber_{E}$&MG &2.14&34.48&33.65&0.80 \\ \hline
606
607     EPSA&EP &1.19 &25.32&20.79&4.53\\ \hline
608     $Rauber_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
609     $Rauber_{E}$&EP&2.05&42.09&57.59&-15.50\\ \hline
610
611     EPSA&LU&1.56& 39.55 &19.38& 20.17\\ \hline
612     $Rauber_{E-P}$&LU&2.14&45.62&27.00&18.62 \\ \hline
613     $Rauber_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
614
615     EPSA&BT&1.31& 29.60&20.53&9.07 \\ \hline
616     $Rauber_{E-P}$&BT&2.10&45.53&49.63&-4.10\\ \hline
617     $Rauber_{E}$&BT&2.10&43.93&52.86&-8.93\\ \hline
618
619     EPSA&SP&1.38& 33.51&15.65&17.86 \\ \hline
620     $Rauber_{E-P}$&SP&2.11&45.62&42.52&3.10\\ \hline
621     $Rauber_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
622
623     EPSA&FT&1.25&25.00&10.80&14.20 \\ \hline
624     $Rauber_{E-P}$&FT&2.10&39.29&34.30&4.99 \\ \hline
625     $Rauber_{E}$&FT&2.10&37.56&38.21&-0.65\\ \hline
626   \end{tabular}
627   \label{table:compare Class A}
628   % is used to refer this table in the text
629 \end{table}
630 \begin{table}[ht]
631   \caption{Comparing Results for The NAS Class B}
632   % title of Table
633   \centering
634   \begin{tabular}{ | l | l | l |l | l |l|  }
635     \hline
636     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
637     name &name&value& Saving \%&Degradation \% &Distance
638     \\ \hline
639     % \rowcolor[gray]{0.85}
640     EPSA&CG & 1.66 &39.23&16.63&22.60   \\ \hline
641     $Rauber_{E-P}$&CG &2.15 &45.34&27.60&17.74\\ \hline
642     $Rauber_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
643
644     EPSA&MG & 1.47 &34.98&18.35&16.63\\ \hline
645     $Rauber_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
646     $Rauber_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
647
648     EPSA&EP &1.08 &20.29&17.15&3.14 \\ \hline
649     $Rauber_{E-P}$&EP&2.00&42.38&56.88&-14.50\\ \hline
650     $Rauber_{E}$&EP&2.00&39.73&59.94&-20.21\\ \hline
651
652     EPSA&LU&1.47&38.57&21.34&17.23 \\ \hline
653     $Rauber_{E-P}$&LU&2.10&43.62&36.51&7.11 \\ \hline
654     $Rauber_{E}$&LU&2.10&43.61&38.54&5.07 \\ \hline
655
656     EPSA&BT&1.31& 29.59&20.88&8.71\\ \hline
657     $Rauber_{E-P}$&BT&2.10&44.53&53.05&-8.52\\ \hline
658     $Rauber_{E}$&BT&2.10&42.93&52.80&-9.87\\ \hline
659
660     EPSA&SP&1.38&33.44&19.24&14.20 \\ \hline
661     $Rauber_{E-P}$&SP&2.15&45.69&43.20&2.49\\ \hline
662     $Rauber_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
663
664     EPSA&FT&1.38&34.40&14.57&19.83 \\ \hline
665     $Rauber_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
666     $Rauber_{E}$&FT&2.13&43.04&37.90&5.14\\ \hline
667   \end{tabular}
668   \label{table:compare Class B}
669   % is used to refer this table in the text
670 \end{table}
671
672 \begin{table}[ht]
673   \caption{Comparing Results for The NAS Class C}
674   % title of Table
675   \centering
676   \begin{tabular}{ | l | l | l |l | l |l|  }
677     \hline
678     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
679     name &name&value& Saving \%&Degradation \% &Distance
680     \\ \hline
681     % \rowcolor[gray]{0.85}
682     EPSA&CG & 1.56 &39.23&14.88&24.35  \\ \hline
683     $Rauber_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
684     $Rauber_{E}$&CG &2.15 &45.36&26.70&18.66\\ \hline
685
686     EPSA&MG & 1.47 &34.97&21.69&13.27\\ \hline
687     $Rauber_{E-P}$&MG &2.15&43.65&40.45&3.20 \\ \hline
688     $Rauber_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
689
690     EPSA&EP &1.04 &22.14&20.73&1.41 \\ \hline
691     $Rauber_{E-P}$&EP&1.92&39.40&56.33&-16.93\\ \hline
692     $Rauber_{E}$&EP&1.92&38.10&56.35&-18.25\\ \hline
693
694     EPSA&LU&1.38&35.83&22.49&13.34 \\ \hline
695     $Rauber_{E-P}$&LU&2.15&44.97&41.00&3.97 \\ \hline
696     $Rauber_{E}$&LU&2.15&44.97&41.80&3.17 \\ \hline
697
698     EPSA&BT&1.31& 29.60&21.28&8.32\\ \hline
699     $Rauber_{E-P}$&BT&2.13&45.60&49.84&-4.24\\ \hline
700     $Rauber_{E}$&BT&2.13&44.90&55.16&-10.26\\ \hline
701
702     EPSA&SP&1.38&33.48&21.35&12.12\\ \hline
703     $Rauber_{E-P}$&SP&2.10&45.69&43.60&2.09\\ \hline
704     $Rauber_{E}$&SP&2.10&45.75&44.10&1.65\\ \hline
705
706     EPSA&FT&1.47&34.72&19.00&15.72 \\ \hline
707     $Rauber_{E-P}$&FT&2.04&39.40&37.10&2.30\\ \hline
708     $Rauber_{E}$&FT&2.04&39.35&37.70&1.65\\ \hline
709   \end{tabular}
710 \label{table:compare Class C}
711 % is used to refer this table in the text
712 \end{table}
713 As shown in these tables our scaling factor is not optimal for energy saving
714 such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
715 the energy and the performance simultaneously. Our EPSA optimal scaling factors
716 has better simultaneous optimization for both the energy and the performance
717 compared to Rauber's energy-performance method ($Rauber_{E-P}$). Also, in
718 ($Rauber_{E-P}$) method when setting the frequency to maximum value for the
719 slower task lead to a small improvement of the performance. Also the results
720 show that this method keep or improve energy saving. Because of the energy
721 consumption decrease when the execution time decreased while the frequency value
722 increased.
723
724 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
725 percent and the performance degradation percent. Therefore, this means it is the
726 same resultant of our objective function EQ~(\ref{eq:max}). Our algorithm always
727 gives positive energy to performance trade offs while Rauber's method
728 ($Rauber_{E-P}$) gives in some time negative trade offs such as in BT and
729 EP. The positive trade offs with highest values lead to maximum energy savings
730 concatenating with less performance degradation and this the objective of this
731 paper. While the negative trade offs refers to improving energy saving (or may
732 be the performance) while degrading the performance (or may be the energy) more
733 than the first.
734 \begin{figure*}
735   \centering
736   \includegraphics[width=.33\textwidth]{compare_class_A.pdf}\hfill%
737   \includegraphics[width=.33\textwidth]{compare_class_B.pdf}\hfill%
738   \includegraphics[width=.33\textwidth]{compare_class_c.pdf}
739   \caption{Comparing Our EPSA with Rauber's Methods}
740   \label{fig:compare}
741 \end{figure*}
742
743 \section{Conclusion}
744 \label{sec.conc}
745
746 \AG{the conclusion needs to be written\dots{} one day}
747
748 \section*{Acknowledgment}
749
750 Computations have been performed on the supercomputer facilities of the
751 Mésocentre de calcul de Franche-Comté.
752
753 \bibliographystyle{IEEEtran}
754 \bibliography{IEEEabrv,my_reference}
755 \end{document}
756
757 %%% Local Variables:
758 %%% mode: latex
759 %%% TeX-master: t
760 %%% fill-column: 80
761 %%%ispell-local-dictionary: "american"
762 %%% End:
763
764 %  LocalWords:  Badri Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
765 %  LocalWords:  CMOS EQ EPSA