]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
bfa1bc123373a5f472f6d8cc6a349e7fd2baba36
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 % \usepackage{sectsty}
13 % \usepackage{titlesec}
14 % \usepackage{secdot}
15 %\usepackage[font={footnotesize,bt}]{caption}
16 %\usepackage[font=scriptsize,labelfont=bf]{caption}
17 \usepackage[textsize=footnotesize]{todonotes}
18 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}}
19
20 \begin{document}
21
22 \title{Optimal Dynamic Frequency Scaling for Energy-Performance of Parallel MPI Programs}
23
24 \author{%
25   \IEEEauthorblockN{%
26     Ahmed Badri,
27     Jean-Claude Charr,
28     Raphaël Couturier and
29     Arnaud Giersch
30   }
31   \IEEEauthorblockA{%
32     FEMTO-ST Institute\\
33     University of Franche-Comté
34   }
35 }
36
37 \maketitle
38
39 \AG{``Optimal'' is a bit pretentious in the title.\\
40   Complete affiliation, add an email address, etc.}
41
42 \begin{abstract}
43   \AG{complete the abstract\dots}
44 \end{abstract}
45
46 \section{Introduction}
47 \label{sec.intro}
48
49 The need for computing power is still increasing and it is not expected to slow
50 down in the coming years. To satisfy this demand, researchers and supercomputers
51 constructors have been regularly increasing the number of computing cores in
52 supercomputers (for example in November 2013, according to the TOP500
53 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
54 millions of cores and delivers more than 33 Tflop/s while consuming 17808
55 kW). This large increase in number of computing cores has led to large energy
56 consumption by these architectures. Moreover, the price of energy is expected to
57 continue its ascent according to the demand. For all these reasons energy
58 reduction became an important topic in the high performance computing field. To
59 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
60 Scaling) operations which reduce dynamically the frequency and voltage of cores
61 and thus their energy consumption. However, this operation also degrades the
62 performance of computation. Therefore researchers try to reduce the frequency to
63 minimum when processors are idle (waiting for data from other processors or
64 communicating with other processors). Moreover, depending on their objectives
65 they use heuristics to find the best scaling factor during the computation. If
66 they aim for performance they choose the best scaling factor that reduces the
67 consumed energy while affecting as little as possible the performance. On the
68 other hand, if they aim for energy reduction, the chosen scaling factor must
69 produce the most energy efficient execution without considering the degradation
70 of the performance. It is important to notice that lowering the frequency to
71 minimum value does not always give the most efficient execution due to energy
72 leakage. The best scaling factor might be chosen during execution (online) or
73 during a pre-execution phase.  In this paper we emphasize to develop an
74 algorithm that selects the optimal frequency scaling factor that takes into
75 consideration simultaneously the energy consumption and the performance. The
76 main objective of HPC systems is to run the application with less execution
77 time. Therefore, our algorithm selects the optimal scaling factor online with
78 very small footprint. The proposed algorithm takes into account the
79 communication times of the MPI programs to choose the scaling factor. This
80 algorithm has ability to predict both energy consumption and execution time over
81 all available scaling factors.  The prediction achieved depends on some
82 computing time information, gathered at the beginning of the runtime.  We apply
83 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
84 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
85 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
86 over an homogeneous distributed memory architecture. Furthermore, we compare the
87 proposed algorithm with Rauber's methods.
88 \AG{Add citation for Rauber's methods.  Moreover, Rauber was not alone to to this work (use ``Rauber et al.'', or ``Rauber and Gudula'', or \dots)}
89 The comparison's results show that our
90 algorithm gives better energy-time trade off.
91 %
92 \AG{Correctly reword the following}%
93 In Section~\ref{sec.relwork} we present works from other
94 authors. Then, in Sections~\ref{sec.ptasks} and~\ref{sec.energy}, we
95 introduce our model. [\dots] Finally, we conclude in
96 Section~\ref{sec.concl}.
97
98 \section{Related Works}
99 \label{sec.relwork}
100
101 \AG{Consider introducing the models (sec.~\ref{sec.ptasks},
102   maybe~\ref{sec.energy}) before related works}
103
104 In the this section some heuristics, to compute the scaling factor, are
105 presented and classified in two parts : offline and online methods.
106
107 \subsection{The offline DVFS orientations}
108
109 The DVFS offline methods are static and are not executed during the runtime of
110 the program. Some approaches used heuristics to select the best DVFS state
111 during the compilation phases as an example in Azevedo et al.~\cite{40}. He used
112 intra-task algorithm to choose the DVFS setting when there are dependency points
113 between tasks. While in~\cite{29}, Xie et al. used breadth-first search
114 algorithm to do that. Their goal is saving energy with time limits. Another
115 approaches gathers and stores the runtime information for each DVFS state, then
116 used their methods offline to select the suitable DVFS that optimize energy-time
117 trade offs. As an example~\cite{8}, Rountree et al. used liner programming
118 algorithm, while in~\cite{38,34}, Cochran et al. used multi logistic regression
119 algorithm for the same goal. The offline study that shown the DVFS impact on the
120 communication time of the MPI program is~\cite{17}, Freeh et al. show that these
121 times not changed when the frequency is scaled down.
122
123 \subsection{The online DVFS orientations}
124
125 The objective of these works is to dynamically compute and set the frequency of
126 the CPU during the runtime of the program for saving energy. Estimating and
127 predicting approaches for the energy-time trade offs developed by
128 ~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
129 times. These times happen when the processors have to wait for data from other
130 processors to compute their task. For example, during the synchronous
131 communication time that take place in the MPI programs, the processors are
132 idle. The optimal DVFS can be selected using the learning methods. Therefore, in
133 ~\cite{39,19} used machine learning to converge to the suitable DVFS
134 configuration. Their learning algorithms have big time to converge when the
135 number of available frequencies is high. Also, the communication time of the MPI
136 program used online for saving energy as in~\cite{1}, Lim et al. developed an
137 algorithm that detects the communication sections and changes the frequency
138 during these sections only. This approach changes the frequency many times
139 because an iteration may contain more than one communication section. The domain
140 of analytical modeling used for choosing the optimal frequency as in~\cite{3},
141 Rauber et al. developed an analytical mathematical model for determining the
142 optimal frequency scaling factor for any number of concurrent tasks, without
143 considering communication times. They set the slowest task to maximum frequency
144 for maintaining performance.  In this paper we compare our algorithm with
145 Rauber's model~\cite{3}, because his model can be used for any number of
146 concurrent tasks for homogeneous platform and this is the same direction of this
147 paper.  However, the primary contributions of this paper are:
148 \begin{enumerate}
149 \item Selecting the optimal frequency scaling factor for energy and performance
150   simultaneously. While taking into account the communication time.
151 \item Adapting our scale factor to taking into account the imbalanced tasks.
152 \item The execution time of our algorithm is very small when compared to other
153   methods (e.g.,~\cite{19}).
154 \item The proposed algorithm works online without profiling or training as
155   in~\cite{38,34}.
156 \end{enumerate}
157
158 \section{Parallel Tasks Execution on Homogeneous Platform}
159 \label{sec.ptasks}
160
161 A homogeneous cluster consists of identical nodes in terms of the hardware and
162 the software. Each node has its own memory and at least one processor which can
163 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
164 executed on this model can be either synchronous or asynchronous. In this paper
165 we consider execution of the synchronous tasks on distributed homogeneous
166 platform. These tasks can exchange the data via synchronous memory passing.
167 \begin{figure*}[t]
168   \centering
169   \subfloat[Synch. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
170   \subfloat[Synch. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
171   \caption{Parallel Tasks on Homogeneous Platform}
172   \label{fig:homo}
173 \end{figure*}
174 Therefore, the execution time of a task consists of the computation time and the
175 communication time. Moreover, the synchronous communications between tasks can
176 lead to idle time while tasks wait at the synchronous point for others tasks to
177 finish their communications see figure~(\ref{fig:h1}).  Another source for idle
178 times is the imbalanced computations. This happen when processing different
179 amounts of data on each processor as an example see figure~(\ref{fig:h2}). In
180 this case the fastest tasks have to wait at the synchronous barrier for the
181 slowest tasks to finish their job. In both two cases the overall execution time
182 of the program is the execution time of the slowest task as :
183 \begin{equation}
184   \label{eq:T1}
185   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
186 \end{equation}
187 where $T_i$ is the execution time of process $i$.
188
189 \section{Energy Model for Homogeneous Platform}
190 \label{sec.energy}
191
192 The energy consumption by the processor consists of two powers metric: the
193 dynamic and the static power. This general power formulation is used by many
194 researchers see~\cite{9,3,15,26}. The dynamic power of the CMOS processors
195 $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
196 the supply voltage $V$ and operational frequency $f$ respectively as follow :
197 \begin{equation}
198   \label{eq:pd}
199   P_{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
200 \end{equation}
201 The static power $P_{static}$ captures the leakage power consumption as well as
202 the power consumption of peripheral devices like the I/O subsystem.
203 \begin{equation}
204   \label{eq:ps}
205   P_{static}  = V \cdot N \cdot K_{design} \cdot I_{leak}
206 \end{equation}
207 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
208 design dependent parameter and $I_{leak}$ is a technology-dependent
209 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
210 of the dynamic and the static power multiply by the execution time for example
211 see~\cite{36,15} .
212 \begin{equation}
213   \label{eq:eind}
214   E_{ind} = ( P_{dyn} + P_{static} ) \cdot T
215 \end{equation}
216 The dynamic voltage and frequency scaling (DVFS) is a process that allowed in
217 modern processors to reduce the dynamic power by scaling down the voltage and
218 frequency. Its main objective is to reduce the overall energy
219 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
220 supply voltage $V$, i.e., $V = \beta . f$ with some constant $\beta$. This
221 equation is used to study the change of the dynamic voltage with respect to
222 various frequency values in~\cite{3}. The reduction process of the frequency are
223 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
224 maximum and the new frequency as in EQ~(\ref{eq:s}).
225 \begin{equation}
226   \label{eq:s}
227   S = \frac{F_{max}}{F_{new}}
228 \end{equation}
229 The value of the scale \emph S is grater than 1 when changing the frequency to
230 any new frequency value(\emph {P-state}) in governor. It is equal to 1 when the
231 frequency are set to the maximum frequency.  The energy consumption model for
232 parallel homogeneous platform is depending on the scaling factor \emph S. This
233 factor reduces quadratically the dynamic power.  Also, this factor increases the
234 static energy linearly because the execution time is increased~\cite{36}.  The
235 energy model, depending on the frequency scaling factor, of homogeneous platform
236 for any number of concurrent tasks develops by Rauber~\cite{3}. This model
237 consider the two powers metric for measuring the energy of the parallel tasks as
238 in EQ~(\ref{eq:energy}).
239
240 \begin{equation}
241   \label{eq:energy}
242   E = P_{dyn} \cdot S_1^{-2} \cdot
243     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
244     P_{static} \cdot T_1 \cdot S_1 \cdot N
245  \hfill
246 \end{equation}
247 Where \emph N is the number of parallel nodes, $T_1 $ is the time of the slower
248 task, $T_i$ is the time of the task $i$ and $S_1$ is the maximum scaling factor
249 for the slower task. The scaling factor $S_1$, as in EQ~(\ref{eq:s1}), selects
250 from the set of scales values $S_i$. Each of these scales are proportional to
251 the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
252 \begin{equation}
253   \label{eq:s1}
254   S_1 = \max_{i=1,2,\dots,F} S_i
255 \end{equation}
256 \begin{equation}
257   \label{eq:si}
258   S_i = S \cdot \frac{T_1}{T_i}
259       = \frac{F_{max}}{F_{new}} \cdot \frac{T_1}{T_i}
260 \end{equation}
261 Where $F$ is the number of available frequencies. In this paper we depend on
262 Rauber's energy model EQ~(\ref{eq:energy}) for two reasons : 1-this model used
263 for homogeneous platform that we work on in this paper. 2-we are compare our
264 algorithm with Rauber's scaling model.  Rauber's optimal scaling factor for
265 optimal energy reduction derived from the EQ~(\ref{eq:energy}). He takes the
266 derivation for this equation (to be minimized) and set it to zero to produce the
267 scaling factor as in EQ~(\ref{eq:sopt}).
268 \begin{equation}
269   \label{eq:sopt}
270   S_{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_{dyn}}{P_{static}} \cdot
271     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
272 \end{equation}
273
274 \section{Performance Evaluation of MPI Programs}
275 \label{sec.mpip}
276
277 The performance (execution time) of the parallel MPI applications are depends on
278 the time of the slowest task as in figure~(\ref{fig:homo}). Normally the
279 execution time of the parallel programs are proportional to the operational
280 frequency. Therefore, any DVFS operation for the energy reduction increase the
281 execution time of the parallel program. As shown in EQ~(\ref{eq:energy}) the
282 energy affected by the scaling factor $S$. This factor also has a great impact
283 on the performance. When scaling down the frequency to the new value according
284 to EQ~(\ref{eq:s}) lead to the value of the scale $S$ has inverse relation with
285 new frequency value ($S \propto \frac{1}{F_{new}}$). Also when decrease the
286 frequency value, the execution time increase. Then the new frequency value has
287 inverse relation with time ($F_{new} \propto \frac{1}{T}$). This lead to the
288 frequency scaling factor $S$ proportional linearly with execution time ($S
289 \propto T$). Large scale MPI applications such as NAS benchmarks have
290 considerable amount of communications embedded in these programs. During the
291 communication process the processor remain idle until the communication has
292 finished. For that reason any change in the frequency has no impact on the time
293 of communication but it has obvious impact on the time of
294 computation~\cite{17}. We are made many tests on real cluster to prove that the
295 frequency scaling factor \emph S has a linear relation with computation time
296 only also see~\cite{41}. To predict the execution time of MPI program, firstly
297 must be precisely specifying communication time and the computation time for the
298 slower task. Secondly, we use these times for predicting the execution time for
299 any MPI program as a function of the new scaling factor as in the
300 EQ~(\ref{eq:tnew}).
301 \begin{equation}
302   \label{eq:tnew}
303   T_{new} = T_{\textit{Max Comp Old}} \cdot S + T_{\textit{Max Comm Old}}
304 \end{equation}
305 The above equation shows that the scaling factor \emph S has linear relation
306 with the computation time without affecting the communication time. The
307 communication time consists of the beginning times which an MPI calls for
308 sending or receiving till the message is synchronously sent or received. In this
309 paper we predict the execution time of the program for any new scaling factor
310 value. Depending on this prediction we can produce our energy-performance scaling
311 method as we will show in the coming sections. In the next section we make an
312 investigation study for the EQ~(\ref{eq:tnew}).
313
314 \section{Performance Prediction Verification}
315 \label{sec.verif}
316
317 In this section we evaluate the precision of our performance prediction methods
318 on the NAS benchmark. We use the EQ~(\ref{eq:tnew}) that predicts the execution
319 time for any scale value. The NAS programs run the class B for comparing the
320 real execution time with the predicted execution time. Each program runs offline
321 with all available scaling factors on 8 or 9 nodes to produce real execution
322 time values. These scaling factors are computed by dividing the maximum
323 frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
324 SimGrid/SMPI v3.10 to run the NAS programs.
325 \begin{figure*}[t]
326   \centering
327   \includegraphics[width=.4\textwidth]{cg_per.eps}\qquad%
328   \includegraphics[width=.4\textwidth]{mg_pre.eps}
329   \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
330   \includegraphics[width=.4\textwidth]{lu_pre.eps}
331   \caption{Fitting Predicted to Real Execution Time}
332   \label{fig:pred}
333 \end{figure*}
334 %see Figure~\ref{fig:pred}
335 In our cluster there are 18 available frequency states for each processor from
336 2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
337 frequencies. For more details on the characteristics of the platform refer to
338 table~(\ref{table:platform}). This lead to 18 run states for each program. We
339 use seven MPI programs of the NAS parallel benchmarks : CG, MG, EP, FT, BT, LU
340 and SP. The average normalized errors between the predicted execution time and
341 the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. AS an
342 example, we are present the execution times of the NAS benchmarks as in the
343 figure~(\ref{fig:pred}).
344
345 \section{Performance to Energy Competition}
346 \label{sec.compet}
347
348 This section demonstrates our approach for choosing the optimal scaling
349 factor. This factor gives maximum energy reduction taking into account the
350 execution time for both computation and communication times . The relation
351 between the energy and the performance are nonlinear and complex, because the
352 relation of the energy with scaling factor is nonlinear and with the performance
353 it is linear see~\cite{17}. The relation between the energy and the performance
354 is not straightforward. Moreover, they are not measured using the same metric.
355 For solving this problem, we normalize the energy by calculating the ratio
356 between the consumed energy with scaled frequency and the consumed energy
357 without scaled frequency :
358 \begin{multline}
359   \label{eq:enorm}
360   E_\textit{Norm} = \frac{E_{Reduced}}{E_{Original}}\\
361   {} = \frac{ P_{dyn} \cdot S_i^{-2} \cdot
362                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
363                P_{static} \cdot T_1 \cdot S_i \cdot N  }{
364               P_{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
365               P_{static} \cdot T_1 \cdot N }
366 \end{multline}
367 \AG{Use \texttt{\textbackslash{}text\{xxx\}} or
368   \texttt{\textbackslash{}textit\{xxx\}} for all subscripted words in equations
369   (e.g. \mbox{\texttt{E\_\{\textbackslash{}text\{Norm\}\}}}).
370
371   Don't hesitate to define new commands :
372   \mbox{\texttt{\textbackslash{}newcommand\{\textbackslash{}ENorm\}\{E\_\{\textbackslash{}text\{Norm\}\}\}}}
373 }
374 By the same way we can normalize the performance as follows :
375 \begin{equation}
376   \label{eq:pnorm}
377   P_{Norm} = \frac{T_{New}}{T_{Old}}
378           = \frac{T_{\textit{Max Comp Old}} \cdot S +
379               T_{\textit{Max Comm Old}}}{T_{Old}}
380 \end{equation}
381 The second problem is the optimization operation for both energy and performance
382 is not in the same direction. In other words, the normalized energy and the
383 performance curves are not in the same direction see figure~(\ref{fig:r2}).
384 While the main goal is to optimize the energy and performance in the same
385 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
386 scaling factor \emph S reduce both the energy and the performance
387 simultaneously. But the main objective is to produce maximum energy reduction
388 with minimum performance reduction. Many researchers used different strategies
389 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
390 big overhead to the algorithm for selecting the suitable frequency. In this
391 paper we are present a method to find the optimal scaling factor \emph S for
392 optimize both energy and performance simultaneously without adding big
393 overheads.  Our solution for this problem is to make the optimization process
394 have the same direction. Therefore, we inverse the equation of normalize
395 performance as follows :
396 \begin{equation}
397   \label{eq:pnorm_en}
398   P^{-1}_{Norm} = \frac{T_{Old}}{T_{New}}
399                = \frac{T_{Old}}{T_{\textit{Max Comp Old}} \cdot S +
400                  T_{\textit{Max Comm Old}}}
401 \end{equation}
402 \begin{figure*}
403   \centering
404   \subfloat[Converted Relation.]{%
405     \includegraphics[width=.33\textwidth]{file.eps}\label{fig:r1}}%
406   \qquad%
407   \subfloat[Real Relation.]{%
408     \includegraphics[width=.33\textwidth]{file3.eps}\label{fig:r2}}
409   \label{fig:rel}
410   \caption{The Energy and Performance Relation}
411 \end{figure*}
412 Then, we can modelize our objective function as finding the maximum distance
413 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
414 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
415 the minimum energy consumption with minimum execution time (better performance)
416 in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
417 following form:
418 \begin{equation}
419   \label{eq:max}
420   \textit{MaxDist} = \max (\overbrace{P^{-1}_{Norm}}^{\text{Maximize}} -
421                            \overbrace{E_{Norm}}^{\text{Minimize}} )
422 \end{equation}
423 Then we can select the optimal scaling factor that satisfy the
424 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
425 static power values stored in a data file. Moreover, this function works in
426 optimal way when the energy function has a convex form with frequency scaling
427 factor as shown in~\cite{15,3,19}. Energy measurement model is not the
428 objective of this paper and we choose Rauber's model as an example with two
429 reasons that mentioned before.
430
431 \section{Optimal Scaling Factor for Performance and Energy}
432 \label{sec.optim}
433
434 In the previous section we described the objective function that satisfy our
435 goal in discovering optimal scaling factor for both performance and energy at
436 the same time. Therefore, we develop an energy to performance scaling algorithm
437 (EPSA). This algorithm is simple and has a direct way to calculate the optimal
438 scaling factor for both energy and performance at the same time.
439 \begin{algorithm}[tp]
440   \caption{EPSA}
441   \label{EPSA}
442   \begin{algorithmic}[1]
443     \State  Initialize the variable $Dist=0$
444     \State Set dynamic and static power values.
445     \State Set $P_{states}$ to the number of available frequencies.
446     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
447     \State Set the variable $F_{diff}$ to the scale value between each two frequencies.
448     \For {$i=1$   to   $P_{states} $}
449       \State - Calculate the new frequency as $F_{new}=F_{new} - F_{diff} $
450       \State - Calculate the scale factor $S$ as in EQ~(\ref{eq:s}).
451       \State - Calculate all available scales $S_i$  depend on $S$ as in EQ~(\ref{eq:si}).
452       \State - Select the maximum scale factor $S_1$ from the set of scales $S_i$.
453       \State - Calculate the normalize energy $E_{Norm}=E_{R}/E_{O}$ as in EQ~(\ref{eq:enorm}).
454       \State - Calculate the normalize inverse of performance\par
455                $P_{NormInv}=T_{old}/T_{new}$ as in EQ~(\ref{eq:pnorm_en}).
456       \If{  $(P_{NormInv}-E_{Norm} > Dist$) }
457         \State $S_{optimal} = S$
458         \State $Dist = P_{NormInv} - E_{Norm}$
459       \EndIf
460     \EndFor
461     \State  Return $S_{optimal}$
462   \end{algorithmic}
463 \end{algorithm}
464 The proposed EPSA algorithm works online during the execution time of the MPI
465 program. It selects the optimal scaling factor by gathering some information
466 from the program after one iteration. This algorithm has small execution time
467 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The data
468 required by this algorithm is the computation time and the communication time
469 for each task from the first iteration only. When these times are measured, the
470 MPI program calls the EPSA algorithm to choose the new frequency using the
471 optimal scaling factor. Then the program set the new frequency to the
472 system. The algorithm is called just one time during the execution of the
473 program. The DVFS algorithm~(\ref{dvfs}) shows where and when the EPSA algorithm is called
474 in the MPI program.
475 %\begin{minipage}{\textwidth}
476 %\AG{Use the same format as for Algorithm~\ref{EPSA}}
477
478 \begin{algorithm}[tp]
479   \caption{DVFS}
480   \label{dvfs}
481   \begin{algorithmic}
482  \For {$J:=1$ to $Some-Iterations \; $}
483   \State -Computations Section.
484    \State -Communications Section.
485    \If {$(J==1)$} 
486      \State -Gather all times of computation and\par
487         \State      communication from each node.
488      \State -Call EPSA with these times.
489      \State -Calculate the new frequency from optimal scale.
490      \State -Set the new frequency to the system.
491    \EndIf
492 \EndFor
493 \end{algorithmic}
494 \end{algorithm}
495
496 After obtaining the optimal scale factor from the EPSA algorithm. The program
497 calculates the new frequency $F_i$ for each task proportionally to its time
498 value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
499 can calculate the new frequency $F_i$ as follows :
500 \begin{equation}
501   \label{eq:fi}
502   F_i = \frac{F_{max} \cdot T_i}{S_{optimal} \cdot T_{max}}
503 \end{equation}
504 According to this equation all the nodes may have the same frequency value if
505 they have balanced workloads. Otherwise, they take different frequencies when
506 have imbalanced workloads. Then EQ~(\ref{eq:fi}) works in adaptive way to change
507 the frequency according to the nodes workloads.
508
509 \section{Experimental Results}
510 \label{sec.expe}
511
512 The proposed EPSA algorithm was applied to seven MPI programs of the NAS
513 benchmarks (EP, CG, MG, FT, BT, LU and SP). We work on three classes (A, B and
514 C) for each program. Each program runs on specific number of processors
515 proportional to the size of the class.  Each class represents the problem size
516 ascending from the class A to C. Additionally, depending on some speed up points
517 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
518 respectively. Our experiments are executed on the simulator SimGrid/SMPI
519 v3.10. We design a platform file that simulates a cluster with one core per
520 node. This cluster is a homogeneous architecture with distributed memory. The
521 detailed characteristics of our platform file are shown in the
522 table~(\ref{table:platform}). Each node in the cluster has 18 frequency values
523 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
524 frequencies.
525 \begin{table}[htb]
526   \caption{Platform File Parameters}
527   % title of Table
528   \centering
529   \begin{tabular}{ | l | l | l |l | l |l |l |  p{2cm} |}
530     \hline
531     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
532     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
533     2.5 &800 & 2.25 GBps &$5\times 10^{-7} s$& 1 GBps & $5\times 10^{-5}$ s&Full  \\
534     GHz& MHz&  & & &  &Duplex  \\\hline
535   \end{tabular}
536   \label{table:platform}
537 \end{table}
538 Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
539 the NAS MPI programs while assuming the power dynamic is equal to 20W and the
540 power static is equal to 4W for all experiments. We run the proposed EPSA
541 algorithm for all these programs. The results showed that the algorithm selected
542 different scaling factors for each program depending on the communication
543 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
544 there are different distances between the normalized energy and the normalized
545 inversed performance curves, because there are different communication features
546 for each MPI program.  When there are little or not communications, the inversed
547 performance curve is very close to the energy curve. Then the distance between
548 the two curves is very small. This lead to small energy savings. The opposite
549 happens when there are a lot of communication, the distance between the two
550 curves is big.  This lead to more energy savings (e.g. CG and FT), see
551 table~(\ref{table:factors results}). All discovered frequency scaling factors
552 optimize both the energy and the performance simultaneously for all the NAS
553 programs. In table~(\ref{table:factors results}), we record all optimal scaling
554 factors results for each program on class C. These factors give the maximum
555 energy saving percent and the minimum performance degradation percent in the
556 same time over all available scales.
557 \begin{figure*}[t]
558   \centering
559   \includegraphics[width=.33\textwidth]{ep.eps}\hfill%
560   \includegraphics[width=.33\textwidth]{cg.eps}\hfill%
561   \includegraphics[width=.33\textwidth]{sp.eps}
562   \includegraphics[width=.33\textwidth]{lu.eps}\hfill%
563   \includegraphics[width=.33\textwidth]{bt.eps}\hfill%
564   \includegraphics[width=.33\textwidth]{ft.eps}
565   \caption{Optimal scaling factors for The NAS MPI Programs}
566   \label{fig:nas}
567 \end{figure*}
568 \begin{table}[htb]
569   \caption{Optimal Scaling Factors Results}
570   % title of Table
571   \centering
572   \AG{Use the same number of decimals for all numbers in a column,
573     and vertically align the numbers along the decimal points.
574     The same for all the following tables.}
575   \begin{tabular}{ | l | l | l |l | l | p{2cm} |}
576     \hline
577     Program & Optimal & Energy  & Performance&Energy-Perf.\\
578     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
579     CG & 1.56 &39.23&14.88 &24.35\\ \hline
580     MG & 1.47 &34.97&21.70 &13.27 \\ \hline
581     EP & 1.04 &22.14&20.73 &1.41\\ \hline
582     LU & 1.38 &35.83&22.49 &13.34\\ \hline
583     BT & 1.31 &29.60&21.28 &8.32\\ \hline
584     SP & 1.38 &33.48&21.36 &12.12\\ \hline
585     FT & 1.47 &34.72&19.00 &15.72\\ \hline
586   \end{tabular}
587   \label{table:factors results}
588   % is used to refer this table in the text
589 \end{table}
590
591 As shown in the table~(\ref{table:factors results}), when the optimal scaling
592 factor has big value we can gain more energy savings for example as in CG and
593 FT. The opposite happens when the optimal scaling factor is small value as
594 example BT and EP. Our algorithm selects big scaling factor value when the
595 communication and the other slacks times are big and smaller ones in opposite
596 cases. In EP there are no communications inside the iterations. This make our
597 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
598
599 \section{Comparing Results}
600 \label{sec.compare}
601
602 In this section, we compare our EPSA algorithm results with Rauber's
603 methods~\cite{3}. He had two scenarios, the first is to reduce energy to optimal
604 level without considering the performance as in EQ~(\ref{eq:sopt}). We refer to
605 this scenario as $Rauber_{E}$. The second scenario is similar to the first
606 except setting the slower task to the maximum frequency (when the scale $S=1$)
607 to keep the performance from degradation as mush as possible. We refer to this
608 scenario as $Rauber_{E-P}$. The comparison is made in tables~(\ref{table:compare
609   Class A},\ref{table:compare Class B},\ref{table:compare Class C}). These
610 tables show the results of our EPSA and Rauber's two scenarios for all the NAS
611 benchmarks programs for classes A,B and C.
612 \begin{table*}[p]
613   \caption{Comparing Results for  The NAS Class A}
614   % title of Table
615   \centering
616   \begin{tabular}{ | l | l | l |l | l | l|  }
617     \hline
618     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
619     name &name&value& Saving \%&Degradation \% &Distance
620     \\ \hline
621     % \rowcolor[gray]{0.85}
622     EPSA&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
623     $Rauber_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.50\\ \hline
624     $Rauber_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
625
626     EPSA&MG & 1.47 &27.66&16.82&10.84\\ \hline
627     $Rauber_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
628     $Rauber_{E}$&MG &2.14&34.48&33.65&0.80 \\ \hline
629
630     EPSA&EP &1.19 &25.32&20.79&4.53\\ \hline
631     $Rauber_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
632     $Rauber_{E}$&EP&2.05&42.09&57.59&-15.50\\ \hline
633
634     EPSA&LU&1.56& 39.55 &19.38& 20.17\\ \hline
635     $Rauber_{E-P}$&LU&2.14&45.62&27.00&18.62 \\ \hline
636     $Rauber_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
637
638     EPSA&BT&1.31& 29.60&20.53&9.07 \\ \hline
639     $Rauber_{E-P}$&BT&2.10&45.53&49.63&-4.10\\ \hline
640     $Rauber_{E}$&BT&2.10&43.93&52.86&-8.93\\ \hline
641
642     EPSA&SP&1.38& 33.51&15.65&17.86 \\ \hline
643     $Rauber_{E-P}$&SP&2.11&45.62&42.52&3.10\\ \hline
644     $Rauber_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
645
646     EPSA&FT&1.25&25.00&10.80&14.20 \\ \hline
647     $Rauber_{E-P}$&FT&2.10&39.29&34.30&4.99 \\ \hline
648     $Rauber_{E}$&FT&2.10&37.56&38.21&-0.65\\ \hline
649   \end{tabular}
650   \label{table:compare Class A}
651   % is used to refer this table in the text
652 \end{table*}
653 \begin{table*}[p]
654   \caption{Comparing Results for The NAS Class B}
655   % title of Table
656   \centering
657   \begin{tabular}{ | l | l | l |l | l |l|  }
658     \hline
659     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
660     name &name&value& Saving \%&Degradation \% &Distance
661     \\ \hline
662     % \rowcolor[gray]{0.85}
663     EPSA&CG & 1.66 &39.23&16.63&22.60   \\ \hline
664     $Rauber_{E-P}$&CG &2.15 &45.34&27.60&17.74\\ \hline
665     $Rauber_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
666
667     EPSA&MG & 1.47 &34.98&18.35&16.63\\ \hline
668     $Rauber_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
669     $Rauber_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
670
671     EPSA&EP &1.08 &20.29&17.15&3.14 \\ \hline
672     $Rauber_{E-P}$&EP&2.00&42.38&56.88&-14.50\\ \hline
673     $Rauber_{E}$&EP&2.00&39.73&59.94&-20.21\\ \hline
674
675     EPSA&LU&1.47&38.57&21.34&17.23 \\ \hline
676     $Rauber_{E-P}$&LU&2.10&43.62&36.51&7.11 \\ \hline
677     $Rauber_{E}$&LU&2.10&43.61&38.54&5.07 \\ \hline
678
679     EPSA&BT&1.31& 29.59&20.88&8.71\\ \hline
680     $Rauber_{E-P}$&BT&2.10&44.53&53.05&-8.52\\ \hline
681     $Rauber_{E}$&BT&2.10&42.93&52.80&-9.87\\ \hline
682
683     EPSA&SP&1.38&33.44&19.24&14.20 \\ \hline
684     $Rauber_{E-P}$&SP&2.15&45.69&43.20&2.49\\ \hline
685     $Rauber_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
686
687     EPSA&FT&1.38&34.40&14.57&19.83 \\ \hline
688     $Rauber_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
689     $Rauber_{E}$&FT&2.13&43.04&37.90&5.14\\ \hline
690   \end{tabular}
691   \label{table:compare Class B}
692   % is used to refer this table in the text
693 \end{table*}
694
695 \begin{table*}[p]
696   \caption{Comparing Results for The NAS Class C}
697   % title of Table
698   \centering
699   \begin{tabular}{ | l | l | l |l | l |l|  }
700     \hline
701     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
702     name &name&value& Saving \%&Degradation \% &Distance
703     \\ \hline
704     % \rowcolor[gray]{0.85}
705     EPSA&CG & 1.56 &39.23&14.88&24.35  \\ \hline
706     $Rauber_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
707     $Rauber_{E}$&CG &2.15 &45.36&26.70&18.66\\ \hline
708
709     EPSA&MG & 1.47 &34.97&21.69&13.27\\ \hline
710     $Rauber_{E-P}$&MG &2.15&43.65&40.45&3.20 \\ \hline
711     $Rauber_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
712
713     EPSA&EP &1.04 &22.14&20.73&1.41 \\ \hline
714     $Rauber_{E-P}$&EP&1.92&39.40&56.33&-16.93\\ \hline
715     $Rauber_{E}$&EP&1.92&38.10&56.35&-18.25\\ \hline
716
717     EPSA&LU&1.38&35.83&22.49&13.34 \\ \hline
718     $Rauber_{E-P}$&LU&2.15&44.97&41.00&3.97 \\ \hline
719     $Rauber_{E}$&LU&2.15&44.97&41.80&3.17 \\ \hline
720
721     EPSA&BT&1.31& 29.60&21.28&8.32\\ \hline
722     $Rauber_{E-P}$&BT&2.13&45.60&49.84&-4.24\\ \hline
723     $Rauber_{E}$&BT&2.13&44.90&55.16&-10.26\\ \hline
724
725     EPSA&SP&1.38&33.48&21.35&12.12\\ \hline
726     $Rauber_{E-P}$&SP&2.10&45.69&43.60&2.09\\ \hline
727     $Rauber_{E}$&SP&2.10&45.75&44.10&1.65\\ \hline
728
729     EPSA&FT&1.47&34.72&19.00&15.72 \\ \hline
730     $Rauber_{E-P}$&FT&2.04&39.40&37.10&2.30\\ \hline
731     $Rauber_{E}$&FT&2.04&39.35&37.70&1.65\\ \hline
732   \end{tabular}
733 \label{table:compare Class C}
734 % is used to refer this table in the text
735 \end{table*}
736 As shown in these tables our scaling factor is not optimal for energy saving
737 such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
738 the energy and the performance simultaneously. Our EPSA optimal scaling factors
739 has better simultaneous optimization for both the energy and the performance
740 compared to Rauber's energy-performance method ($Rauber_{E-P}$). Also, in
741 ($Rauber_{E-P}$) method when setting the frequency to maximum value for the
742 slower task lead to a small improvement of the performance. Also the results
743 show that this method keep or improve energy saving. Because of the energy
744 consumption decrease when the execution time decreased while the frequency value
745 increased.
746
747 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
748 percent and the performance degradation percent. Therefore, this means it is the
749 same resultant of our objective function EQ~(\ref{eq:max}). Our algorithm always
750 gives positive energy to performance trade offs while Rauber's method
751 ($Rauber_{E-P}$) gives in some time negative trade offs such as in BT and
752 EP. The positive trade offs with highest values lead to maximum energy savings
753 concatenating with less performance degradation and this the objective of this
754 paper. While the negative trade offs refers to improving energy saving (or may
755 be the performance) while degrading the performance (or may be the energy) more
756 than the first.
757 \begin{figure}[t]
758   \centering
759   \includegraphics[width=.33\textwidth]{compare_class_A.pdf}
760   \includegraphics[width=.33\textwidth]{compare_class_B.pdf}
761   \includegraphics[width=.33\textwidth]{compare_class_c.pdf}
762   \caption{Comparing Our EPSA with Rauber's Methods}
763   \label{fig:compare}
764 \end{figure}
765
766 \section{Conclusion}
767 \label{sec.concl}
768
769 \AG{the conclusion needs to be written\dots{} one day}
770
771 \section*{Acknowledgment}
772
773 \AG{Right?}
774 Computations have been performed on the supercomputer facilities of the
775 Mésocentre de calcul de Franche-Comté.
776
777 \bibliographystyle{IEEEtran}
778 \bibliography{IEEEabrv,my_reference}
779 \end{document}
780
781 %%% Local Variables:
782 %%% mode: latex
783 %%% TeX-master: t
784 %%% fill-column: 80
785 %%%ispell-local-dictionary: "american"
786 %%% End:
787
788 %  LocalWords:  Badri Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
789 %  LocalWords:  CMOS EQ EPSA