]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
*a* homogeneous
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{amsmath}
10
11 \usepackage{url}
12 \DeclareUrlCommand\email{\urlstyle{same}}
13
14 \usepackage[autolanguage,np]{numprint}
15 \AtBeginDocument{%
16   \renewcommand*\npunitcommand[1]{\text{#1}}
17   \npthousandthpartsep{}}
18
19 \usepackage{xspace}
20 \usepackage[textsize=footnotesize]{todonotes}
21 \newcommand{\AG}[2][inline]{%
22   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
23 \newcommand{\JC}[2][inline]{%
24   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
27
28 \newcommand{\Dist}{\textit{Dist}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Fdiff}{\Xsub{F}{diff}}
34 \newcommand{\Fmax}{\Xsub{F}{max}}
35 \newcommand{\Fnew}{\Xsub{F}{new}}
36 \newcommand{\Ileak}{\Xsub{I}{leak}}
37 \newcommand{\Kdesign}{\Xsub{K}{design}}
38 \newcommand{\MaxDist}{\textit{Max Dist}}
39 \newcommand{\Ntrans}{\Xsub{N}{trans}}
40 \newcommand{\Pdyn}{\Xsub{P}{dyn}}
41 \newcommand{\PnormInv}{\Xsub{P}{NormInv}}
42 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
43 \newcommand{\Pstates}{\Xsub{P}{states}}
44 \newcommand{\Pstatic}{\Xsub{P}{static}}
45 \newcommand{\Sopt}{\Xsub{S}{opt}}
46 \newcommand{\Tcomp}{\Xsub{T}{comp}}
47 \newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
48 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
49 \newcommand{\Tmax}{\Xsub{T}{max}}
50 \newcommand{\Tnew}{\Xsub{T}{New}}
51 \newcommand{\Told}{\Xsub{T}{Old}}
52
53 \begin{document}
54
55 \title{Dynamic Frequency Scaling for Energy Consumption
56   Reduction in Synchronous Distributed Applications}
57
58 \author{%
59   \IEEEauthorblockN{%
60     Jean-Claude Charr,
61     Raphaël Couturier,
62     Ahmed Fanfakh and
63     Arnaud Giersch
64   }
65   \IEEEauthorblockA{%
66     FEMTO-ST Institute\\
67     University of Franche-Comté\\
68     IUT de Belfort-Montbéliard,
69     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
70     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
71     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
72     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
73    }
74   }
75
76 \maketitle
77
78 \begin{abstract}
79   Dynamic Voltage Frequency Scaling (DVFS) can be applied to modern CPUs.  This
80   technique is usually used to reduce the energy consumed by a CPU while
81   computing.  Thus, decreasing the frequency
82   reduces the power consumed by the CPU.  However, it can also significantly
83   affect the performance of the executed program if it is compute bound and if a
84   low CPU frequency is selected.  Therefore, the chosen scaling factor must
85   give the best possible trade-off between energy reduction and performance.
86
87   In this paper we present an algorithm that predicts the energy consumed with
88   each frequency gear and selects the one that gives the best ratio between
89   energy consumption reduction and performance.  This algorithm works online
90   without training or profiling and has a very small overhead.  It also takes
91   into account synchronous communications between the nodes that are executing
92   the distributed algorithm.  The algorithm has been evaluated over the SimGrid
93   simulator while being applied to the NAS parallel benchmark programs.  The
94   results of the experiments show that it outperforms other existing scaling
95   factor selection algorithms.
96 \end{abstract}
97
98 \section{Introduction}
99 \label{sec.intro}
100
101 The need and demand for more computing power have been increasing since the
102 birth of the first computing unit and it is not expected to slow down in the
103 coming years.  To satisfy this demand, researchers and supercomputers
104 constructors have been regularly increasing the number of computing cores and
105 processors in supercomputers (for example in November 2013, according to the
106 TOP500 list~\cite{43}, the Tianhe-2 was the fastest supercomputer.  It has more
107 than 3 million of cores and delivers more than \np[Tflop/s]{33} while consuming
108 \np[kW]{17808}).  This large increase in number of computing cores has led to
109 large energy consumption by these architectures.  Moreover, the price of energy
110 is expected to continue its ascent according to the demand.  For all these
111 reasons energy reduction has become an important topic in the high performance
112 computing field.  To tackle this problem, many researchers use DVFS (Dynamic
113 Voltage Frequency Scaling) operations which reduce dynamically the frequency and
114 voltage of cores and thus their energy consumption.  Indeed, modern CPUs offer a
115 set of acceptable frequencies which are usually called gears, and the user or
116 the operating system can modify the frequency of the processor according to its
117 needs.  However, DVFS also degrades the performance of computation.  Therefore
118 researchers try to reduce the frequency to the minimum when processors are idle
119 (waiting for data from other processors or communicating with other processors).
120 Moreover, depending on their objectives, they use heuristics to find the best
121 scaling factor during the computation.  If they aim for performance they choose
122 the best scaling factor that reduces the consumed energy while affecting as
123 little as possible the performance.  On the other hand, if they aim for energy
124 reduction, the chosen scaling factor must produce the most energy efficient
125 execution without considering the degradation of the performance.  It is
126 important to notice that lowering the frequency to the minimum value does not always
127 give the most energy efficient execution due to energy leakage.  The best
128 scaling factor might be chosen during execution (online) or during a
129 pre-execution phase.  In this paper, we present an algorithm that selects a
130 frequency scaling factor that simultaneously takes into consideration the energy
131 consumption by the CPU and the performance of the application.  The main
132 objective of HPC systems is to execute as fast as possible the application.
133 Therefore, our algorithm selects the scaling factor online with very small
134 overhead.  The proposed algorithm takes into account the communication times of
135 the MPI program to choose the scaling factor.  This algorithm has the ability to
136 predict both energy consumption and execution time over all available scaling
137 factors.  The prediction achieved depends on some computing time information,
138 gathered at the beginning of the runtime.  We apply this algorithm to the NAS parallel benchmarks (NPB v3.3)~\cite{44}.  Our experiments are executed using the simulator
139 SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183} over a homogeneous
140 distributed memory architecture.  Furthermore, we compare the proposed algorithm
141 with Rauber and Rünger methods~\cite{3}.  The comparison's results show that our
142 algorithm gives better energy-time trade-off.
143
144 This paper is organized as follows: Section~\ref{sec.relwork} presents some
145 related works from other authors.  Section~\ref{sec.exe}  presents an energy
146 model for homogeneous platforms.  Section~\ref{sec.mpip} describes how the
147 performance of MPI programs can be predicted.  Section~\ref{sec.compet} presents
148 the energy-performance objective function that maximizes the reduction of energy
149 consumption while minimizing the degradation of the program's performance.
150 Section~\ref{sec.optim} details the proposed energy-performance algorithm.
151 Section~\ref{sec.expe} verifies the accuracy of the performance prediction model
152 and presents the results of the proposed algorithm.  It also shows the
153 comparison results between our method and other existing methods.  Finally, we
154 conclude in Section~\ref{sec.concl} with a summary and some future works.
155
156 \section{Related works}
157 \label{sec.relwork}
158
159
160 In this section, some heuristics to compute the scaling factor are presented and
161 classified into two categories: offline and online methods.
162
163 \subsection{Offline scaling factor selection methods}
164
165 The offline scaling factor selection methods are executed before the runtime of
166 the program.  They return static scaling factor values to the processors
167 participating in the execution of the parallel program.  On the one hand, the
168 scaling factor values could be computed based on information retrieved by
169 analyzing the code of the program and the computing system that will execute it.
170 In~\cite{40}, Azevedo et al. detect during compilation the dependency points
171 between tasks in a multi-task program.  This information is then used to lower
172 the frequency of some processors in order to eliminate slack times.  A slack
173 time is the period of time during which a processor that has already finished
174 its computation, has to wait for a set of processors to finish their
175 computations and send their results to the waiting processor in order to
176 continue its task that is dependent on the results of computations being
177 executed on other processors.  Freeh et al. showed in~\cite{17} that the
178 communication times of MPI programs do not change when the frequency is scaled
179 down.  On the other hand, some offline scaling factor selection methods use the
180 information gathered from previous full or partial executions of the program. The whole program or, a 
181 part of it,  is usually executed over all the available frequency
182 gears and the execution time and the energy consumed with each frequency
183 gear are measured.  Then a heuristic or an exact method uses the retrieved
184 information to compute the values of the scaling factor for the processors.
185 In~\cite{8} , Rountree et al. use a linear programming algorithm, while in~\cite{34}, Cochran et
186 al. use a multi-logistic regression algorithm for the same goal.  The main
187 drawback of these methods is that they all require executing the
188 whole program or, a part of it, on all frequency gears for each new instance of the same program.
189
190 \subsection{Online scaling factor selection methods}
191
192 The online scaling factor selection methods are executed during the runtime of
193 the program.  They are usually integrated into iterative programs where the same
194 block of instructions is executed many times.  During the first few iterations,
195 a lot of information is measured such as the execution time, the energy consumed
196 using a multimeter, the slack times, \dots{} Then a method will exploit these
197 measurements to compute the scaling factor values for each processor.  This
198 operation, measurements and computing new scaling factor, can be repeated as
199 much as needed if the iterations are not regular. Peraza, Yu-Liang et
200 al.~\cite{2,31} used varied heuristics to select the appropriate scaling
201 factor values to eliminate the slack times during runtime.  However, as seen
202 in~\cite{19}, machine learning method takes a lot of time to converge
203 when the number of available gears is big.  To reduce the impact of slack times,
204 in~\cite{1}, Lim et al. developed an algorithm that detects the communication
205 sections and changes the frequency during these sections only.  This approach
206 might change the frequency of each processor many times per iteration if an
207 iteration contains more than one communication section.  In~\cite{3}, Rauber and
208 Rünger used an analytical model that can predict the consumed energy for every frequency gear after measuring the consumed energy. They
209 maintain the performance as mush as possible by setting the highest frequency gear to the slowest task. 
210
211 The primary contribution of 
212 our paper is to present a new online scaling factor selection method which has the
213  following characteristics:\\
214 1) It is based on Rauber and Rünger analytical model to predict the energy
215   consumption of the application with different frequency gears. 
216 2) It selects the frequency scaling factor for simultaneously optimizing
217   energy reduction and maintaining performance. 
218 3) It is well adapted to distributed architectures because it takes into
219   account the communication time. 
220 4) It is well adapted to distributed applications with imbalanced tasks.
221 5) It has a very small overhead when compared to other methods
222   (e.g.,~\cite{19}) and does not require profiling or training as
223   in~\cite{34}.
224
225
226 % \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
227 %   can be deleted if we need space, we can just say we are interested in this
228 %   paper in homogeneous clusters}
229
230
231 \section{Energy model for a homogeneous platform}
232 \label{sec.exe}
233 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
234 two power metrics: the static and the dynamic power.  While the first one is
235 consumed as long as the computing unit is on, the latter is only consumed during
236 computation times.  The dynamic power $\Pdyn$ is related to the switching
237 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
238 operational frequency $f$, as shown in EQ~\eqref{eq:pd}.
239 \begin{equation}
240   \label{eq:pd}
241   \Pdyn = \alpha \cdot C_L \cdot V^2 \cdot f
242 \end{equation}
243 The static power $\Pstatic$ captures the leakage power as follows:
244 \begin{equation}
245   \label{eq:ps}
246    \Pstatic  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
247 \end{equation}
248 where V is the supply voltage, $\Ntrans$ is the number of transistors,
249 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
250 technology-dependent parameter.  The energy consumed by an individual processor
251 to execute a given program can be computed as:
252 \begin{equation}
253   \label{eq:eind}
254    \Eind =  \Pdyn \cdot \Tcomp + \Pstatic \cdot T
255 \end{equation}
256 where $T$ is the execution time of the program, $\Tcomp$ is the computation
257 time and $\Tcomp \leq T$. $\Tcomp$ may be equal to $T$ if there is no
258 communication, no slack time and no synchronization.
259
260 DVFS is a process that is allowed in modern processors to reduce the dynamic
261 power by scaling down the voltage and frequency.  Its main objective is to
262 reduce the overall energy consumption~\cite{37}.  The operational frequency $f$
263 depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot f$ with some
264 constant $\beta$.  This equation is used to study the change of the dynamic
265 voltage with respect to various frequency values in~\cite{3}.  The reduction
266 process of the frequency can be expressed by the scaling factor $S$ which is the
267 ratio between the maximum and the new frequency as in EQ~\eqref{eq:s}.
268 \begin{equation}
269   \label{eq:s}
270   S = \frac{\Fmax}{\Fnew}
271 \end{equation}
272 The value of the scaling factor $S$ is greater than 1 when changing the
273 frequency of the CPU to any new frequency value~(\emph{P-state}) in the
274 governor. This factor reduces quadratically
275 the dynamic power which may cause degradation in performance and thus, the
276 increase of the static energy because the execution time is increased~\cite{36}.
277 If the tasks are sorted according to their execution times before scaling in a
278 descending order, the total energy consumption model for a parallel homogeneous
279 platform, as presented by Rauber and Rünger~\cite{3}, can be written as a
280 function of the scaling factor $S$, as in EQ~\eqref{eq:energy}.
281
282 \begin{equation}
283   \label{eq:energy}
284   E = \Pdyn \cdot S_1^{-2} \cdot
285     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
286       \Pstatic \cdot T_1 \cdot S_1 \cdot N
287 \end{equation}
288 where $N$ is the number of parallel nodes, $T_i$ for $i=1,\dots,N$ are
289 the execution times of the sorted tasks.  Therefore, $T_1$ is
290 the time of the slowest task, and $S_1$ its scaling factor which should be the
291 highest because they are proportional to the time values $T_i$.  The scaling
292 factors $S_i$ are computed as in EQ~\eqref{eq:si}.
293 \begin{equation}
294   \label{eq:si}
295   S_i = S \cdot \frac{T_1}{T_i}
296       = \frac{\Fmax}{\Fnew} \cdot \frac{T_1}{T_i}
297 \end{equation}
298 In this paper we use Rauber and Rünger's energy model, EQ~\eqref{eq:energy}, because it can be applied to homogeneous clusters if the communication time is taken in consideration. Moreover, we compare our algorithm with Rauber and Rünger's scaling factor selection
299 method which uses the same energy model.  In their method, the optimal scaling factor is
300 computed by minimizing the derivation of EQ~\eqref{eq:energy} which produces
301 EQ~\eqref{eq:sopt}.
302
303 \begin{equation}
304   \label{eq:sopt}
305   \Sopt = \sqrt[3]{\frac{2}{N} \cdot \frac{\Pdyn}{\Pstatic} \cdot
306     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
307 \end{equation}
308
309
310 \section{Performance evaluation of MPI programs}
311 \label{sec.mpip}
312
313 The performance (execution time) of parallel synchronous MPI applications depends
314 on the time of the slowest task.  If there is no
315 communication and the application is not data bounded, the execution time of a
316 parallel program is linearly proportional to the operational frequency and any
317 DVFS operation for energy reduction increases the execution time of the parallel
318 program.  Therefore, the scaling factor $S$ is linearly proportional to the
319 execution time.  However, in most MPI applications the processes exchange
320 data.  During these communications the processors involved remain idle until the
321 communications are finished.  For that reason, any change in the frequency has no
322 impact on the time of communication~\cite{17}.  The communication time for a
323 task is the summation of periods of time that begin with an MPI call for sending
324 or receiving a message till the message is synchronously sent or received.  To
325 be able to predict the execution time of MPI program, the communication time and
326 the computation time for the slowest task must be measured before scaling.  These
327 times are used to predict the execution time for any MPI program as a function
328 of the new scaling factor as in EQ~\eqref{eq:tnew}.
329 \begin{equation}
330   \label{eq:tnew}
331   \Tnew = \TmaxCompOld \cdot S + \TmaxCommOld
332 \end{equation}
333 In this paper, this prediction method is used to select the best scaling factor
334 for each processor as presented in the next section.
335
336 \section{Performance and energy reduction trade-off}
337 \label{sec.compet}
338
339 This section presents our approach for choosing the optimal scaling factor.
340 This factor gives maximum energy reduction while taking into account the execution
341 times for both computation and communication.  The relation between the performance
342 and the energy is nonlinear and complex. Thus, unlike the relation between the performance and  the scaling factor,  the relation of energy with the scaling factor is nonlinear, for more details refer to~\cite{17}.  Moreover, they are not measured using the same metric.  To
343 solve this problem, we normalize the energy by calculating the ratio between
344 the consumed energy with scaled frequency and the consumed energy without scaled
345 frequency:
346 \begin{multline}
347   \label{eq:enorm}
348   \Enorm = \frac{ \Ereduced}{\Eoriginal} \\
349       {} = \frac{\Pdyn \cdot S_1^{-2} \cdot
350              \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
351                \Pstatic \cdot T_1 \cdot S_1 \cdot N}{
352              \Pdyn \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
353                \Pstatic \cdot T_1 \cdot N }
354 \end{multline}
355 In the same way we can normalize the performance as follows:
356 \begin{equation}
357   \label{eq:pnorm}
358   \Pnorm = \frac{\Tnew}{\Told}
359          = \frac{\TmaxCompOld \cdot S + \TmaxCommOld}{
360              \TmaxCompOld + \TmaxCommOld}
361 \end{equation}
362 The second problem is that the optimization operation for both energy and
363 performance is not in the same direction.  In other words, the normalized energy
364 and the performance curves are not at the same direction see
365 Figure~\ref{fig:rel}\subref{fig:r2}.  While the main goal is to optimize the
366 energy and performance in the same time.  According to the
367 equations~\eqref{eq:enorm} and~\eqref{eq:pnorm}, the scaling factor $S$ reduce
368 both the energy and the performance simultaneously.  But the main objective is
369 to produce maximum energy reduction with minimum performance reduction.  Many
370 researchers used different strategies to solve this nonlinear problem for
371 example see~\cite{19,42}, their methods add big overheads to the algorithm to
372 select the suitable frequency.  In this paper we present a method to find the
373 optimal scaling factor $S$ to optimize both energy and performance
374 simultaneously without adding a big overhead.  Our solution for this problem is
375 to make the optimization process for energy and performance follow the same
376 direction.  Therefore, we inverse the equation of the normalized performance as
377 follows:
378 \begin{equation}
379   \label{eq:pnorm_en}
380   \Pnorm^{-1} = \frac{ \Told}{ \Tnew}
381                = \frac{\TmaxCompOld +
382                  \TmaxCommOld}{\TmaxCompOld \cdot S +
383                  \TmaxCommOld}
384 \end{equation}
385 \begin{figure}
386   \centering
387   \subfloat[Real relation.]{%
388     \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}}%
389   \subfloat[Converted relation.]{%
390     \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}
391   \caption{The energy and performance relation}
392   \label{fig:rel}
393 \end{figure}
394 Then, we can model our objective function as finding the maximum distance
395 between the energy curve EQ~\eqref{eq:enorm} and the inverse of performance
396 curve EQ~\eqref{eq:pnorm_en} over all available scaling factors.  This
397 represents the minimum energy consumption with minimum execution time (better
398 performance) at the same time, see Figure~\ref{fig:rel}\subref{fig:r1}.  Then
399 our objective function has the following form:
400 \begin{equation}
401   \label{eq:max}
402   \MaxDist = \max_{j=1,2,\dots,F}
403       (\overbrace{\Pnorm^{-1}(S_j)}^{\text{Maximize}} -
404        \overbrace{\Enorm(S_j)}^{\text{Minimize}} )
405 \end{equation}
406 where $F$ is the number of available frequencies. Then we can select the optimal
407 scaling factor that satisfies EQ~\eqref{eq:max}.  Our objective function can
408 work with any energy model or static power values stored in a data file.
409 Moreover, this function works in optimal way when the energy curve has a convex
410 form over the available frequency scaling factors as shown in~\cite{15,3,19}.
411
412 \section{Optimal scaling factor for performance and energy}
413 \label{sec.optim}
414
415 Algorithm on Figure~\ref{EPSA} computes the optimal scaling factor according to
416 the objective function described above.
417 \begin{figure}[tp]
418   \begin{algorithmic}[1]
419     % \footnotesize
420     \Require ~
421     \begin{description}
422     \item[$\Pstatic$] static power value
423     \item[$\Pdyn$] dynamic power value
424     \item[$\Pstates$] number of available frequencies
425     \item[$\Fmax$] maximum frequency
426     \item[$\Fdiff$] difference between two successive freq.
427     \end{description}
428     \Ensure $\Sopt$ is the optimal scaling factor
429
430     \State $\Sopt \gets 1$
431     \State $\Dist \gets 0$
432     \State $\Fnew \gets \Fmax$
433     \For {$j = 2$ to $\Pstates$}
434       \State $\Fnew \gets \Fnew - \Fdiff$
435       \State $S \gets \Fmax / \Fnew$
436       \State $S_i \gets S \cdot \frac{T_1}{T_i}
437                   = \frac{\Fmax}{\Fnew} \cdot \frac{T_1}{T_i}$
438              for $i=1,\dots,N$
439       \State $\Enorm \gets
440           \frac{\Pdyn \cdot S_1^{-2} \cdot
441                   \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
442                   \Pstatic \cdot T_1 \cdot S_1 \cdot N }{
443                 \Pdyn \cdot
444                   \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
445                   \Pstatic \cdot T_1 \cdot N }$
446       \State $\PnormInv \gets \Told / \Tnew$
447       \If{$(\PnormInv - \Enorm > \Dist)$}
448         \State $\Sopt \gets S$
449         \State $\Dist \gets \PnormInv - \Enorm$
450       \EndIf
451     \EndFor
452     \State  Return $\Sopt$
453   \end{algorithmic}
454   \caption{Scaling factor selection algorithm}
455   \label{EPSA}
456 \end{figure}
457
458 The proposed algorithm works online during the execution time of the MPI
459 program.  It selects the optimal scaling factor after gathering the computation
460 and communication times from the program after one iteration.  Then the program
461 changes the new frequencies of the CPUs according to the computed scaling
462 factors. In our experiments over a homogeneous cluster described in
463 Section~\ref{sec.expe}, this algorithm has a small execution time. It takes
464 \np[$\mu$s]{1.52} on average for 4 nodes and \np[$\mu$s]{6.65} on average for 32
465 nodes.  The algorithm complexity is $O(F\cdot N)$, where $F$ is the number of
466 available frequencies and $N$ is the number of computing nodes.  The algorithm
467 is called just once during the execution of the program.  The DVFS algorithm on
468 Figure~\ref{dvfs} shows where and when the algorithm is called in the MPI
469 program.
470 %\begin{table}[htb]
471 %  \caption{Platform file parameters}
472 %  % title of Table
473 %  \centering
474 %  \begin{tabular}{|*{7}{l|}}
475 %    \hline
476 %    Max      & Min      & Backbone        & Backbone         & Link         & Link            & Sharing \\
477 %    Freq.    & Freq.    & Bandwidth       & Latency          & Bandwidth    & Latency         & Policy  \\
478 %    \hline
479 %    \np{2.5} & \np{800} & \np[GBps]{2.25} & \np[$\mu$s]{0.5} & \np[GBps]{1} & \np[$\mu$s]{50} & Full    \\
480 %    GHz      & MHz      &                 &                  &              &                 & Duplex  \\
481 %    \hline
482 %  \end{tabular}
483 %  \label{table:platform}
484 %\end{table}
485
486 \begin{figure}[tp]
487   \begin{algorithmic}[1]
488     % \footnotesize
489     \For {$k=1$ to \textit{some iterations}}
490       \State Computations section.
491       \State Communications section.
492       \If {$(k=1)$}
493         \State Gather all times of computation and\newline\hspace*{3em}%
494                communication from each node.
495         \State Call algorithm from Figure~\ref{EPSA} with these times.
496         \State Compute the new frequency from the\newline\hspace*{3em}%
497               returned optimal scaling factor.
498         \State Set the new frequency to the CPU.
499       \EndIf
500     \EndFor
501   \end{algorithmic}
502   \caption{DVFS algorithm}
503   \label{dvfs}
504 \end{figure}
505 After obtaining the optimal scaling factor, the program calculates the new
506 frequency $F_i$ for each task proportionally to its time value $T_i$.  By
507 substitution of EQ~\eqref{eq:s} in EQ~\eqref{eq:si}, we can calculate the new
508 frequency $F_i$ as follows:
509 \begin{equation}
510   \label{eq:fi}
511   F_i = \frac{\Fmax \cdot T_i}{\Sopt \cdot \Tmax}
512 \end{equation}
513 According to this equation all the nodes may have the same frequency value if
514 they have balanced workloads, otherwise, they take different frequencies when
515 having imbalanced workloads.  Thus, EQ~\eqref{eq:fi} adapts the frequency of the
516 CPU to the nodes' workloads to maintain the performance of the program.
517
518 \section{Experimental results}
519 \label{sec.expe}
520 Our experiments are executed on the simulator SimGrid/SMPI v3.10.  We configure
521 the simulator to use a homogeneous cluster with one core per node.  
522 %The detailed characteristics of our platform file are shown in Table~\ref{table:platform}.
523 Each node in the cluster has 18 frequency values
524 from \np[GHz]{2.5} to \np[MHz]{800} with \np[MHz]{100} difference between each
525 two successive frequencies. The nodes are connected via an ethernet network with 1Gbit/s  bandwidth. 
526
527 \subsection{Performance prediction verification}
528
529 In this section we evaluate the precision of our performance prediction method
530 based on EQ~\eqref{eq:tnew} by applying it to the NAS benchmarks.  The NAS programs
531 are executed with the class B option to compare the real execution time with
532 the predicted execution time.  Each program runs offline with all available
533 scaling factors on 8 or 9 nodes (depending on the benchmark) to produce real
534 execution time values.  These scaling factors are computed by dividing the
535 maximum frequency by the new one see EQ~\eqref{eq:s}.
536 \begin{figure}
537   \centering
538   \includegraphics[width=.5\linewidth]{fig/cg_per}\hfill%
539  % \includegraphics[width=.5\linewidth]{fig/mg_pre}\hfill%
540  % \includegraphics[width=.5\linewidth]{fig/bt_pre}\qquad%
541    \includegraphics[width=.5\linewidth]{fig/lu_pre}\hfill%
542   \caption{Comparing predicted to real execution times}
543   \label{fig:pred}
544 \end{figure}
545 %see Figure~\ref{fig:pred}
546 In our cluster there are 18 available frequency states for each processor.  This
547 leads to 18 run states for each program.  We use seven MPI programs of the NAS
548 parallel benchmarks: CG, MG, EP, FT, BT, LU and SP.  Figure~\ref{fig:pred}
549 presents plots of the real execution times and the simulated ones. The maximum
550 normalized error between these two execution times varies between \np{0.0073} to
551 \np{0.031} dependent on the executed benchmark.  The smallest prediction error
552 was for CG and the worst one was for LU.
553
554 \subsection{The experimental results for the scaling algorithm }
555 The proposed algorithm was applied to seven MPI programs of the NAS benchmarks
556 (EP, CG, MG, FT, BT, LU and SP) which were run with three classes (A, B and C).
557 For each instance the benchmarks were executed on a number of processors
558 proportional to the size of the class.  Each class represents the problem size
559 ascending from class A to C.  Additionally, depending on some speed up points
560 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
561 respectively.  Depending on EQ~\eqref{eq:energy}, we measure the energy
562 consumption for all the NAS MPI programs while assuming that the dynamic power
563 with the highest frequency is equal to \np[W]{20} and the power static is equal
564 to \np[W]{4} for all experiments.  These power values were also used by Rauber
565 and Rünger in~\cite{3}.  The results showed that the algorithm selected
566 different scaling factors for each program depending on the communication
567 features of the program as in the plots from Figure~\ref{fig:nas}.  These plots
568 illustrate that there are different distances between the normalized energy and
569 the normalized inverted performance curves, because there are different
570 communication features for each benchmark.  When there are little or no
571 communications, the inverted performance curve is very close to the energy
572 curve.  Then the distance between the two curves is very small.  This leads to
573 small energy savings.  The opposite happens when there are a lot of
574 communication, the distance between the two curves is big.  This leads to more
575 energy savings (e.g. CG and FT), see Table~\ref{table:compareC}.  All discovered
576 frequency scaling factors optimize both the energy and the performance
577 simultaneously for all NAS benchmarks.  In Table~\ref{table:compareC}, we record
578 all optimal scaling factors results for each benchmark running class C.  These
579 scaling factors give the maximum energy saving percentage and the minimum
580 performance degradation percentage at the same time from all available scaling
581 factors.
582 \begin{figure*}[t]
583   \centering
584   \includegraphics[width=.33\linewidth]{fig/ep}\hfill%
585   \includegraphics[width=.33\linewidth]{fig/cg}\hfill%
586  % \includegraphics[width=.328\linewidth]{fig/sp}
587  %  \includegraphics[width=.328\linewidth]{fig/lu}\hfill%
588   \includegraphics[width=.33\linewidth]{fig/bt}
589  % \includegraphics[width=.328\linewidth]{fig/ft}
590   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
591   \label{fig:nas}
592 \end{figure*}
593
594 As shown in Table~\ref{table:compareC}, when the optimal scaling factor has a
595 big value we can gain more energy savings as in CG and FT benchmarks.  The
596 opposite happens when the optimal scaling factor has a small value as in BT and
597 EP benchmarks.  Our algorithm selects a big scaling factor value when the
598 communication and the other slacks times are big and smaller ones in opposite
599 cases.  In EP there are no communication inside the iterations.  This leads our
600 algorithm to select smaller scaling factor values (inducing smaller energy
601 savings).
602
603 \subsection{Results comparison}
604
605 In this section, we compare our scaling factor selection method with Rauber and
606 Rünger methods~\cite{3}.  They had two scenarios, the first is to reduce energy
607 to the optimal level without considering the performance as in
608 EQ~\eqref{eq:sopt}.  We refer to this scenario as $R_{E}$.  The second scenario
609 is similar to the first except setting the slower task to the maximum frequency
610 (when the scale $S=1$) to keep the performance from degradation as mush as
611 possible.  We refer to this scenario as $R_{E-P}$.  While we refer to our
612 algorithm as EPSA (Energy to Performance Scaling Algorithm).  The comparison is
613 made in Table~\ref{table:compareC}.  This table shows the results of our method and
614 Rauber and Rünger scenarios for all the NAS benchmarks programs for class C.
615
616 \begin{table}
617   \caption{Comparing results for the NAS class C}
618   % title of Table
619   \centering
620   \begin{tabular}{|l|l|*{4}{r|}}
621     \hline
622     Method    & Program & Factor & Energy    & Performance    & Energy-Perf. \\
623     Name      & Name    & Value  & Saving \% & Degradation  \% & Distance     \\
624     \hline
625     % \rowcolor[gray]{0.85}
626     $EPSA$    & CG      & 1.56   & 39.23     & 14.88          &  24.35 \\ \hline
627     $R_{E-P}$ & CG      & 2.15   & 45.36     & 25.89          &  19.47 \\ \hline
628     $R_{E}$   & CG      & 2.15   & 45.36     & 26.70          &  18.66 \\ \hline
629
630     $EPSA$    & MG      & 1.47   & 34.97     & 21.69          &  13.27 \\ \hline
631     $R_{E-P}$ & MG      & 2.15   & 43.65     & 40.45          &   3.20 \\ \hline
632     $R_{E}$   & MG      & 2.15   & 43.64     & 41.38          &   2.26 \\ \hline
633
634     $EPSA$    & EP      & 1.04   & 22.14     & 20.73          &   1.41 \\ \hline
635     $R_{E-P}$ & EP      & 1.92   & 39.40     & 56.33          & -16.93 \\ \hline
636     $R_{E}$   & EP      & 1.92   & 38.10     & 56.35          & -18.25 \\ \hline
637
638     $EPSA$    & LU      & 1.38   & 35.83     & 22.49          &  13.34 \\ \hline
639     $R_{E-P}$ & LU      & 2.15   & 44.97     & 41.00          &   3.97 \\ \hline
640     $R_{E}$   & LU      & 2.15   & 44.97     & 41.80          &   3.17 \\ \hline
641
642     $EPSA$    & BT      & 1.31   & 29.60     & 21.28          &   8.32 \\ \hline
643     $R_{E-P}$ & BT      & 2.13   & 45.60     & 49.84          &  -4.24 \\ \hline
644     $R_{E}$   & BT      & 2.13   & 44.90     & 55.16          & -10.26 \\ \hline
645
646     $EPSA$    & SP      & 1.38   & 33.48     & 21.35          &  12.12 \\ \hline
647     $R_{E-P}$ & SP      & 2.10   & 45.69     & 43.60          &   2.09 \\ \hline
648     $R_{E}$   & SP      & 2.10   & 45.75     & 44.10          &   1.65 \\ \hline
649
650     $EPSA$    & FT      & 1.47   & 34.72     & 19.00          &  15.72 \\ \hline
651     $R_{E-P}$ & FT      & 2.04   & 39.40     & 37.10          &   2.30 \\ \hline
652     $R_{E}$   & FT      & 2.04   & 39.35     & 37.70          &   1.65 \\ \hline
653   \end{tabular}
654   \label{table:compareC}
655   % is used to refer this table in the text
656 \end{table}
657 As shown in Table~\ref{table:compareC}, the ($R_{E-P}$) method outperforms the ($R_{E}$)
658 method in terms of performance and energy reduction.  The ($R_{E-P}$) method
659 also gives better energy savings than our method.  However, although our scaling
660 factor is not optimal for energy reduction, the results in this table prove
661 that our algorithm returns the best scaling factor that satisfy our objective
662 method: the largest distance between energy reduction and performance
663 degradation. Figure~\ref{fig:compare}  illustrates even better the distance between 
664 the energy reduction and performance degradation. The negative values mean that one of
665 the two objectives (energy or performance) have been degraded more than the
666 other.  The positive trade-offs with the highest values lead to maximum energy
667 savings while keeping the performance degradation as low as possible.  Our
668 algorithm always gives the highest positive energy to performance trade-offs
669 while Rauber and Rünger's method, ($R_{E-P}$), gives sometimes negative
670 trade-offs such as in BT and EP.
671 \begin{figure}[t]
672   \centering
673 %  \includegraphics[width=.328\linewidth]{fig/compare_class_A}
674 %  \includegraphics[width=.328\linewidth]{fig/compare_class_B}
675   \includegraphics[width=\linewidth]{fig/compare_class_C}
676   \caption{Comparing our method to Rauber and Rünger's methods}
677   \label{fig:compare}
678 \end{figure}
679
680 \section{Conclusion}
681 \label{sec.concl}
682
683 In this paper, we have presented a new online scaling factor selection method
684 that optimizes simultaneously the energy and performance of a distributed
685 application running on a homogeneous cluster.  It uses the computation and
686 communication times measured at the first iteration to predict energy
687 consumption and the performance of the parallel application at every available
688 frequency.  Then, it selects the scaling factor that gives the best trade-off
689 between energy reduction and performance which is the maximum distance between
690 the energy and the inverted performance curves.  To evaluate this method, we
691 have applied it to the NAS benchmarks and it was compared to Rauber and Rünger
692 methods while being executed on the simulator SimGrid.  The results showed that
693 our method, outperforms Rauber and Rünger's methods in terms of energy-performance
694 ratio. 
695
696 In the near future, we would like to adapt this scaling factor selection method
697 to heterogeneous platforms where each node has different characteristics.  In
698 particular, each CPU has different available frequencies, energy consumption and
699 performance.  It would be also interesting to develop a new energy model for
700 asynchronous parallel iterative methods where the number of iterations is not
701 known in advance and depends on the global convergence of the iterative system.
702
703 \section*{Acknowledgment}
704
705 This work has been partially supported by the Labex ACTION project (contract
706 ``ANR-11-LABX-01-01'').  Computations have been performed on the supercomputer
707 facilities of the Mésocentre de calcul de Franche-Comté.  As a PhD student,
708 Mr. Ahmed Fanfakh, would like to thank the University of Babylon (Iraq) for
709 supporting his work.
710
711 % trigger a \newpage just before the given reference
712 % number - used to balance the columns on the last page
713 % adjust value as needed - may need to be readjusted if
714 % the document is modified later
715 %\IEEEtriggeratref{15}
716
717 \bibliographystyle{IEEEtran}
718 \bibliography{IEEEabrv,my_reference}
719 \end{document}
720
721 %%% Local Variables:
722 %%% mode: latex
723 %%% TeX-master: t
724 %%% fill-column: 80
725 %%% ispell-local-dictionary: "american"
726 %%% End:
727
728 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
729 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex