]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
e6d674576c2498e3775bf478dd47334162588acf
[mpi-energy.git] / paper.tex
1 \documentclass[12pt]{article}
2 %\documentclass[12pt,twocolumn]{article}
3 \DeclareMathSizes{40}{4000}{200}{2000}
4 \usepackage[T1]{fontenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{sectsty}
12 \usepackage{titlesec}
13 \usepackage{secdot}
14 %\usepackage[font={footnotesize,bt}]{caption}
15 %\usepackage[font=scriptsize,labelfont=bf]{caption}
16
17 \begin{document}
18 \begin{center}
19   \Large
20   \title*\textbf{Optimal Dynamic Frequency Scaling for Energy-Performance of Parallel MPI Programs}
21 \end{center}
22 \parskip 0pt
23 \linespread{1.18}
24 \normalsize
25 \makeatletter
26 \renewcommand*{\@seccntformat}[1]{\csname the#1\endcsname\hspace{0.01cm}}
27 \makeatother
28 \sectionfont{\large}
29
30 \section{.~Introduction }
31
32 The need for computing power is still increasing and it is not expected to slow
33 down in the coming years. To satisfy this demand, researchers and supercomputers
34 constructors have been regularly increasing the number of computing cores in
35 supercomputers (for example in November 2013, according to the top 500
36 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
37 millions of cores and delivers more than 33 Tflop/s while consuming 17808
38 kW). This large increase in number of computing cores has led to large energy
39 consumption by these architectures. Moreover, the price of energy is expected to
40 continue its ascent according to the demand. For all these reasons energy
41 reduction became an important topic in the high performance computing field. To
42 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
43 Scaling) operations which reduce dynamically the frequency and voltage of cores
44 and thus their energy consumption. However, this operation also degrades the
45 performance of computation. Therefore researchers try to reduce the frequency to
46 minimum when processors are idle (waiting for data from other processors or
47 communicating with other processors). Moreover, depending on their objectives
48 they use heuristics to find the best scaling factor during the computation. If
49 they aim for performance they choose the best scaling factor that reduces the
50 consumed energy while affecting as little as possible the performance. On the
51 other hand, if they aim for energy reduction, the chosen scaling factor must
52 produce the most energy efficient execution without considering the degradation
53 of the performance. It is important to notice that lowering the frequency to
54 minimum value does not always give the most efficient execution due to energy
55 leakage. The best scaling factor might be chosen during execution (online) or
56 during a pre-execution phase.  In this paper we emphasize to develop an
57 algorithm that selects the optimal frequency scaling factor that takes into
58 consideration simultaneously the energy consumption and the performance. The
59 main objective of HPC systems is to run the application with less execution
60 time. Therefore, our algorithm selects the optimal scaling factor online with
61 very small footprint. The proposed algorithm takes into account the
62 communication times of the MPI programs to choose the scaling factor. This
63 algorithm has ability to predict both energy consumption and execution time over
64 all available scaling factors.  The prediction achieved depends on some
65 computing time information, gathered at the beginning of the runtime.  We apply
66 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
67 penchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
68 using the simulator Simgrid/SMPI v3.10~\cite{45} over an homogeneous distributed
69 memory architecture. Furthermore, we compare the proposed algorithm with
70 Rauber's methods. The comparison's results show that our algorithm gives better
71 energy-time trade off.
72 \sectionfont{\large}
73
74 \section{.~Related Works }
75
76 In the this section some heuristics, to compute the scaling factor, are
77 presented and classified in two parts : offline and online methods.
78  \sectionfont{\large}
79
80 \subsection{~The offline DVFS orientations}
81
82 The DVFS offline methods are static and are not executed during the runtime of
83 the program. Some approaches used heuristics to select the best DVFS state
84 during the compilation phases as an example in Azevedo et al.~\cite{40}. He used
85 intra-task algorithm to choose the DVFS setting when there are dependency points
86 between tasks. While in~\cite{29}, Xie et al. used breadth-first search
87 algorithm to do that. Their goal is saving energy with time limits. Another
88 approaches gathers and stores the runtime information for each DVFS state , then
89 used their methods offline to select the suitable DVFS that optimize energy-time
90 trade offs. As an example~\cite{8}, Rountree et al. used liner programming
91 algorithm, while in~\cite{38,34}, Cochran et al. used multi logistic regression
92 algorithm for the same goal. The offline study that shown the DVFS impact on the
93 communication time of the MPI program is~\cite{17}, Freeh et al. show that these
94 times not changed when the frequency is scaled down.
95 \sectionfont{\large}
96
97 \subsection{~The online DVFS orientations}
98
99 The objective of these works is to dynamically compute and set the frequency of
100 the CPU during the runtime of the program for saving energy. Estimating and
101 predicting approaches for the energy-time trade offs developed by
102 ~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
103 times. These times happen when the processors have to wait for data from other
104 processors to compute their task. For example, during the synchronous
105 communication time that take place in the MPI programs, the processors are
106 idle. The optimal DVFS can be selected using the learning methods. Therefore, in
107 ~\cite{39,19} used machine learning to converge to the suitable DVFS
108 configuration. Their learning algorithms have big time to converge when the
109 number of available frequencies is high. Also, the communication time of the MPI
110 program used online for saving energy as in~\cite{1}, Lim et al. developed an
111 algorithm that detects the communication sections and changes the frequency
112 during these sections only. This approach changes the frequency many times
113 because an iteration may contain more than one communication section. The domain
114 of analytical modeling used for choosing the optimal frequency as in ~\cite{3},
115 Rauber et al. developed an analytical mathematical model for determining the
116 optimal frequency scaling factor for any number of concurrent tasks, without
117 considering communication times. They set the slowest task to maximum frequency
118 for maintaining performance.  In this paper we compare our algorithm with
119 Rauber's model~\cite{3}, because his model can be used for any number of
120 concurrent tasks for homogeneous platform and this is the same direction of this
121 paper.  However, the primary contributions of this paper are:
122 \begin{enumerate}
123 \item Selecting the optimal frequency scaling factor for energy and performance
124   simultaneously. While taking into account the communication time.
125 \item Adapting our scale factor to taking into account the imbalanced tasks.
126 \item The execution time of our algorithm is very small when compared to other
127   methods (e.g.,~\cite{19}).
128 \item The proposed algorithm works online without profiling or training as
129   in~\cite{38,34}.
130 \end{enumerate}
131 \sectionfont{\large}
132
133 \section{.~Parallel Tasks Execution on Homogeneous Platform}
134
135 A homogeneous cluster consists of identical nodes in terms of the hardware and
136 the software. Each node has its own memory and at least one processor which can
137 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
138 executed on this model can be either synchronous or asynchronous. In this paper
139 we consider execution of the synchronous tasks on distributed homogeneous
140 platform. These tasks can exchange the data via synchronous memory passing.
141 \begin{figure}[h]
142   \centering
143   \subfloat[Synch. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
144   \subfloat[Synch. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
145   \caption{Parallel Tasks on Homogeneous Platform}
146   \label{fig:homo}
147 \end{figure}
148 Therefore, the execution time of a task consists of the computation time and the
149 communication time. Moreover, the synchronous communications between tasks can
150 lead to idle time while tasks wait at the synchronous point for others tasks to
151 finish their communications see figure~(\ref{fig:h1}).  Another source for idle
152 times is the imbalanced computations. This happen when processing different
153 amounts of data on each processor as an example see figure~(\ref{fig:h2}). In
154 this case the fastest tasks have to wait at the synchronous barrier for the
155 slowest tasks to finish their job. In both two cases the overall execution time
156 of the program is the execution time of the slowest task as :
157 \begin{equation}  \label{eq:T1}
158   Program Time=MAX_{i=1,2,..,N} (T_i) \hfill
159 \end{equation}
160 where $T_i$ is the execution time of process $i$.
161 \sectionfont{\large}
162
163 \section{.~Energy Model for Homogeneous Platform}
164
165 The energy consumption by the processor consists of two powers metric: the
166 dynamic and the static power. This general power formulation is used by many
167 researchers see ~\cite{9,3,15,26}. The dynamic power of the CMOS processors
168 $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
169 the supply voltage $V$ and operational frequency $f$ respectively as follow :
170 \begin{equation}  \label{eq:pd}
171   \displaystyle  P_{dyn} = \alpha . C_L . V^2 . f
172 \end{equation}
173 The static power $P_{static}$ captures the leakage power consumption as well as
174 the power consumption of peripheral devices like the I/O subsystem.
175 \begin{equation}  \label{eq:ps}
176   \displaystyle  P_{static}  = V . N . K_{design} . I_{leak}
177 \end{equation}
178 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
179 design dependent parameter and $I_{leak}$ is a technology-dependent
180 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
181 of the dynamic and the static power multiply by the execution time for example
182 see~\cite{36,15} .
183 \begin{equation}  \label{eq:eind}
184   \displaystyle  E_{ind} = (P_{dyn} + P_{static} ) . T
185 \end{equation}
186 The dynamic voltage and frequency scaling (DVFS) is a process that allowed in
187 modern processors to reduce the dynamic power by scaling down the voltage and
188 frequency. Its main objective is to reduce the overall energy
189 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
190 supply voltage $V$, i.e., $V = \beta . f$ with some constant $\beta$. This
191 equation is used to study the change of the dynamic voltage with respect to
192 various frequency values in~\cite{3}. The reduction process of the frequency are
193 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
194 maximum and the new frequency as in EQ~(\ref{eq:s}).
195 \begin{equation}  \label{eq:s}
196   S=\:\frac{F_{max}}{F_{new}} \hfill  \newline
197 \end{equation}
198 The value of the scale \emph S is grater than 1 when changing the frequency to
199 any new frequency value(\emph {P-state}) in governor.~It is equal to 1 when the
200 frequency are set to the maximum frequency.  The energy consumption model for
201 parallel homogeneous platform is depending on the scaling factor \emph S. This
202 factor reduces quadratically the dynamic power.  Also, this factor increases the
203 static energy linearly because the execution time is increased~\cite{36}.  The
204 energy model, depending on the frequency scaling factor, of homogeneous platform
205 for any number of concurrent tasks develops by Rauber~\cite{3}. This model
206 consider the two powers metric for measuring the energy of the parallel tasks as
207 in EQ~(\ref{eq:energy}).
208
209 \begin{equation}  \label{eq:energy}
210   E= \displaystyle \;P_{dyn}\,.\,S_1^{-2}\;.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,.\,S_1\;\,.\,N
211  \hfill
212 \end{equation}
213 Where \emph N is the number of parallel nodes, $T_1 $ is the time of the slower
214 task, $T_i$ is the time of the task $i$ and $S_1$ is the maximum scaling factor
215 for the slower task. The scaling factor $S_1$, as in EQ~(\ref{eq:s1}), selects
216 from the set of scales values $S_i$. Each of these scales are proportional to
217 the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
218 \begin{equation}  \label{eq:s1}
219   S_1=MAX_{i=1,2,..,F} (S_i) \hfill
220 \end{equation}
221 \begin{equation}  \label{eq:si}
222   S_i=\:S\: .\:(\frac{T_1}{T_i})=\: (\frac{F_{max}}{F_{new}}).(\frac{T_1}{T_i}) \hfill
223 \end{equation}
224 Where $F$ is the number of available frequencies. In this paper we depend on
225 Rauber's energy model EQ~(\ref{eq:energy}) for two reasons : 1-this model used
226 for homogeneous platform that we work on in this paper. 2-we are compare our
227 algorithm with Rauber's scaling model.  Rauber's optimal scaling factor for
228 optimal energy reduction derived from the EQ~(\ref{eq:energy}). He takes the
229 derivation for this equation (to be minimized) and set it to zero to produce the
230 scaling factor as in EQ~(\ref{eq:sopt}).
231 \begin{equation}  \label{eq:sopt}
232   S_{opt}= {\sqrt [3~]{\frac{2}{n} \frac{P_{dyn}}{P_{static}}  \Big(1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^3}\Big) }} \hfill
233 \end{equation}
234 %[\Big 3]
235 \sectionfont{\large}
236
237 \section{.~Performance Evaluation of MPI Programs}
238
239 The performance (execution time) of the parallel MPI applications are depends on
240 the time of the slowest task as in figure~(\ref{fig:homo}). Normally the
241 execution time of the parallel programs are proportional to the operational
242 frequency. Therefore, any DVFS operation for the energy reduction increase the
243 execution time of the parallel program. As shown in EQ~(\ref{eq:energy}) the
244 energy affected by the scaling factor $S$. This factor also has a great impact
245 on the performance. When scaling down the frequency to the new value according
246 to EQ(~\ref{eq:s}) lead to the value of the scale $S$ has inverse relation with
247 new frequency value ($S \propto \frac{1}{F_{new}}$). Also when decrease the
248 frequency value, the execution time increase. Then the new frequency value has
249 inverse relation with time ($F_{new} \propto \frac{1}{T}$). This lead to the
250 frequency scaling factor $S$ proportional linearly with execution time ($S
251 \propto T$). Large scale MPI applications such as NAS benchmarks have
252 considerable amount of communications embedded in these programs. During the
253 communication process the processor remain idle until the communication has
254 finished. For that reason any change in the frequency has no impact on the time
255 of communication but it has obvious impact on the time of
256 computation~\cite{17}. We are made many tests on real cluster to prove that the
257 frequency scaling factor \emph S has a linear relation with computation time
258 only also see~\cite{41}. To predict the execution time of MPI program, firstly
259 must be precisely specifying communication time and the computation time for the
260 slower task. Secondly, we use these times for predicting the execution time for
261 any MPI program as a function of the new scaling factor as in the
262 EQ~(\ref{eq:tnew}).
263 \begin{equation}  \label{eq:tnew}
264   \displaystyle T_{new}= T_{Max \:Comp \:Old} \; . \:S \;+ \;T_{Max\: Comm\: Old}
265   \hfill
266 \end{equation}
267 The above equation shows that the scaling factor \emph S has linear relation
268 with the computation time without affecting the communication time. The
269 communication time consists of the beginning times which an MPI calls for
270 sending or receiving till the message is synchronously sent or received. In this
271 paper we predict the execution time of the program for any new scaling factor
272 value. Depending on this prediction we can produce our energy-performace scaling
273 method as we will show in the coming sections. In the next section we make an
274 investigation study for the EQ~(\ref{eq:tnew}).
275 \sectionfont{\large}
276
277 \section{.~Performance Prediction Verification }
278
279 In this section we evaluate the precision of our performance prediction methods
280 on the NAS benchmark. We use the EQ~(\ref{eq:tnew}) that predicts the execution
281 time for any scale value. The NAS programs run the class B for comparing the
282 real execution time with the predicted execution time. Each program runs offline
283 with all available scaling factors on 8 or 9 nodes to produce real execution
284 time values. These scaling factors are computed by dividing the maximum
285 frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
286 Simgrid/SMPI v3.10 to run the NAS programs.
287 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
288   \centering
289   \includegraphics[scale=0.60]{cg_per.eps}
290   \includegraphics[scale=0.60]{mg_pre.eps}
291   \includegraphics[scale=0.60]{bt_pre.eps}
292   \includegraphics[scale=0.60]{lu_pre.eps}
293   \caption{Fitting Predicted to Real Execution Time}
294   \label{fig:pred}
295 \end{figure}
296 %see Figure~\ref{fig:pred}
297 In our cluster there are 18 available frequency states for each processor from
298 2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
299 frequencies. For more details on the characteristics of the platform refer to
300 table~(\ref{table:platform}). This lead to 18 run states for each program. We
301 use seven MPI programs of the NAS parallel benchmarks : CG, MG, EP, FT, BT, LU
302 and SP. The average normalized errors between the predicted execution time and
303 the real time (Simgrid time) for all programs is between 0.0032 to 0.0133. AS an
304 example, we are present the execution times of the NAS benchmarks as in the
305 figure~(\ref{fig:pred}).
306 \sectionfont{\large}
307
308 \section{.~Performance to Energy Competition}
309 This section demonstrates our approach for choosing the optimal scaling
310 factor. This factor gives maximum energy reduction taking into account the
311 execution time for both computation and communication times . The relation
312 between the energy and the performance are nonlinear and complex, because the
313 relation of the energy with scaling factor is nonlinear and with the performance
314 it is linear see~\cite{17}. The relation between the energy and the performance
315 is not straightforward. Moreover, they are not measured using the same metric.
316 For solving this problem, we normalize the energy by calculating the ratio
317 between the consumed energy with scaled frequency and the consumed energy
318 without scaled frequency :
319 \begin{equation}  \label{eq:enorm}
320   E_{Norm}=\displaystyle\frac{E_{Reduced}}{E_{Orginal}}= \frac{\displaystyle \;P_{dyn}\,.\,S_i^{-2}\,.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,.\,S_i\;\,.\,N  }{\displaystyle \;P_{dyn}\,.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,\,.\,N   }
321 \end{equation}
322 By the same way we can normalize the performance as follows :
323 \begin{equation}  \label{eq:pnorm}
324   P_{Norm}=\displaystyle \frac{T_{New}}{T_{Old}}=\frac{T_{Max \:Comp \:Old} \;. \:S \;+ \;T_{Max\: Comm\: Old}}{T_{Old}}    \;\;
325 \end{equation}
326 The second problem is the optimization operation for both energy and performance
327 is not in the same direction. In other words, the normalized energy and the
328 performance curves are not in the same direction see figure~(\ref{fig:r2}).
329 While the main goal is to optimize the energy and performance in the same
330 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
331 scaling factor \emph S reduce both the energy and the performance
332 simultaneously. But the main objective is to produce maximum energy reduction
333 with minimum performance reduction. Many researchers used different strategies
334 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
335 big overhead to the algorithm for selecting the suitable frequency. In this
336 paper we are present a method to find the optimal scaling factor \emph S for
337 optimize both energy and performance simultaneously without adding big
338 overheads.  Our solution for this problem is to make the optimization process
339 have the same direction. Therefore, we inverse the equation of normalize
340 performance as follows :
341 \begin{equation}  \label{eq:pnorm_en}
342   \displaystyle P^{-1}_{Norm}= \frac{T_{Old}}{T_{New}}=\frac{T_{Old}}{T_{Max \:Comp \:Old} \;. \:S \;+ \;T_{Max\: Comm\: Old}}
343 \end{equation}
344 \begin{figure}
345   \centering
346   \subfloat[Converted Relation.]{\includegraphics[scale=0.70]{file.eps}\label{fig:r1}}
347   \subfloat[Real Relation.]{\includegraphics[scale=0.70]{file3.eps}\label{fig:r2}}
348   \label{fig:rel}
349   \caption{The Energy and Performance Relation}
350 \end{figure}
351 Then, we can modelize our objective function as finding the maximum distance
352 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
353 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
354 the minimum energy consumption with minimum execution time (better performance)
355 in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
356 following form:
357 \begin{equation}  \label{eq:max}
358   \displaystyle MaxDist = Max \;(\;\overbrace{P^{-1}_{Norm}}^{Maximize}\; -\; \overbrace{E_{Norm}}^{Minimize} \;)
359 \end{equation}
360 Then we can select the optimal scaling factor that satisfy the
361 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
362 static power values stored in a data file. Moreover, this function works in
363 optimal way when the energy function has a convex form with frequency scaling
364 factor as shown in ~\cite{15,3,19}. Energy measurement model is not the
365 objective of this paper and we choose Rauber's model as an example with two
366 reasons that mentioned before.
367 \sectionfont{\large}
368
369 \section{.~Optimal Scaling Factor for Performance and Energy }
370
371 In the previous section we described the objective function that satisfy our
372 goal in discovering optimal scaling factor for both performance and energy at
373 the same time. Therefore, we develop an energy to performance scaling algorithm
374 (EPSA). This algorithm is simple and has a direct way to calculate the optimal
375 scaling factor for both energy and performance at the same time.  \clearpage
376 \linespread{1}
377 \begin{algorithm}[width=\textwidth,height=\textheight,keepaspectratio]
378   \caption{EPSA}
379   \label{EPSA}
380   \begin{algorithmic}[1]
381     \State  Initialize the variable $Dist=0$
382     \State Set dynamic and static power values.
383     \State Set $P_{states}$ to the number of available frequencies.
384     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
385     \State Set the variable $F_{diff}$ to the scale value between each two frequencies.
386     \For {$i=1$   to   $P_{states} $}
387       \State - Calculate the new frequency as $F_{new}=F_{new} - F_{diff} $
388       \State - Calculate the scale factor $S$ as in EQ~(\ref{eq:s}).
389       \State - Calculate all available scales $S_i$  depend on $S$ as in EQ~(\ref{eq:si}).
390       \State - Select the maximum scale factor $S_1$ from the set of scales $S_i$.
391       \State - Calculate the normalize energy $E_{Norm}=E_{R}/E_{O}$ as in EQ~(\ref{eq:enorm}).
392       \State - Calculate the normalize inverse of performance $P_{NormInv}=T_{old}/T_{new}$
393
394       as in EQ~(\ref{eq:pnorm_en}).
395       \If{  $(P_{NormInv}-E_{Norm}$ $>$ $Dist$) }
396         \State $S_{optimal}=S$
397         \State $Dist = P_{NormInv} - E_{Norm}$
398       \EndIf
399     \EndFor
400     \State  $ Return \; \;  (S_{optimal})$
401   \end{algorithmic}
402 \end{algorithm}
403 \linespread{1.2} The proposed EPSA algorithm works online during the execution
404 time of the MPI program. It selects the optimal scaling factor by gathering some
405 information from the program after one iteration. This algorithm has small
406 execution time (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32
407 nodes). The data required by this algorithm is the computation time and the
408 communication time for each task from the first iteration only. When these times
409 are measured, the MPI program calls the EPSA algorithm to choose the new
410 frequency using the optimal scaling factor. Then the program set the new
411 frequency to the system. The algorithm is called just one time during the
412 execution of the program. The following example shows where and when the EPSA
413 algorithm is called in the MPI program : \clearpage
414 \begin{lstlisting}
415 FOR J:=1 to Some_iterations Do
416    -Computations Section.
417    -Communications Section.
418    IF (J==1) THEN
419      -Gather all times of computation and communication
420       from each node.
421      -Call EPSA with these times.
422      -Calculate the new frequency from optimal scale.
423      -Set the new frequency to the system.
424    ENDIF
425 ENDFOR
426 \end{lstlisting}
427 After obtaining the optimal scale factor from the EPSA algorithm. The program
428 calculates the new frequency $F_i$ for each task proportionally to its time
429 value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
430 can calculate the new frequency $F_i$ as follows :
431 \begin{equation}  \label{eq:fi}
432   F_i=\frac{F_{max} \; . \;T_i}{S_{optimal} \; . \;T_{max}} \hfill
433 \end{equation}
434 According to this equation all the nodes may have the same frequency value if
435 they have balanced workloads. Otherwise, they take different frequencies when
436 have imbalanced workloads. Then EQ~(\ref{eq:fi}) works in adaptive way to change
437 the freguency according to the nodes workloads.
438 \sectionfont{\large}
439
440 \section{.~Experimental Results}
441
442 The proposed ESPA algorithm was applied to seven MPI programs of the NAS
443 benchmarks (EP ,CG , MG ,FT , BT, LU and SP). We work on three classes (A, B and
444 C) for each program. Each program runs on specific number of processors
445 proportional to the size of the class.  Each class represents the problem size
446 ascending from the class A to C. Additionally, depending on some speed up points
447 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
448 respectively. Our experiments are executed on the simulator Simgrid/SMPI
449 v3.10. We design a platform file that simulates a cluster with one core per
450 node. This cluster is a homogeneous architecture with distributed memory. The
451 detailed characteristics of our platform file are shown in
452 thetable~(\ref{table:platform}). Each node in the cluster has 18 frequency
453 values from 2.5 GHz to 800 MHz with 100 MHz difference between each two
454 successive frequencies.
455 \begin{table}[ht]
456   \caption{Platform File Parameters}
457   % title of Table
458   \centering
459   \begin{tabular}{ | l | l | l |l | l |l |l |  p{2cm} |}
460     \hline
461     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
462     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
463     2.5 &800 & 2.25 GBps &5E-7 s & 1 GBps & 5E-5 s&Full  \\
464     GHz& MHz&  & & &  &Duplex  \\\hline
465   \end{tabular}
466   \label{table:platform}
467 \end{table}
468 Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
469 the NAS MPI programs while assuming the power dynamic is equal to 20W and the
470 power static is equal to 4W for all experiments. We run the proposed ESPA
471 algorithm for all these programs. The results showed that the algorithm selected
472 different scaling factors for each program depending on the communication
473 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
474 there are different distances between the normalized energy and the normalized
475 inversed performance curves, because there are different communication features
476 for each MPI program.  When there are little or not communications, the inversed
477 performance curve is very close to the energy curve. Then the distance between
478 the two curves is very small. This lead to small energy savings. The opposite
479 happens when there are a lot of communication, the distance between the two
480 curves is big.  This lead to more energy savings (e.g. CG and FT), see
481 table~(\ref{table:factors results}). All discovered frequency scaling factors
482 optimize both the energy and the performance simultaneously for all the NAS
483 programs. In table~(\ref{table:factors results}), we record all optimal scaling
484 factors results for each program on class C. These factors give the maximum
485 energy saving percent and the minimum performance degradation percent in the
486 same time over all available scales.
487 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
488   \centering
489   \includegraphics[scale=0.47]{ep.eps}
490   \includegraphics[scale=0.47]{cg.eps}
491   \includegraphics[scale=0.47]{sp.eps}
492   \includegraphics[scale=0.47]{lu.eps}
493   \includegraphics[scale=0.47]{bt.eps}
494   \includegraphics[scale=0.47]{ft.eps}
495   \caption{Optimal scaling factors for The NAS MPI Programs}
496   \label{fig:nas}
497 \end{figure}
498 \linespread{1.1}
499 \begin{table}[width=\textwidth,height=\textheight,keepaspectratio]
500   \caption{Optimal Scaling Factors Results}
501   % title of Table
502   \centering
503   \begin{tabular}{ | l | l | l |l | l | p{2cm} |}
504     \hline
505     Program & Optimal & Energy  & Performance&Energy-Perf.\\
506     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
507     CG & 1.56 &39.23 & 14.88 & 24.35\\ \hline
508     MG & 1.47 &34.97&21.7& 13.27   \\ \hline
509     EP & 1.04 &22.14&20.73 &1.41\\ \hline
510     LU & 1.388 &35.83&22.49 &13.34\\ \hline
511     BT & 1.315 &29.6&21.28 &8.32\\ \hline
512     SP & 1.388 &33.48 &21.36&12.12\\ \hline
513     FT & 1.47 &34.72 &19&15.72\\ \hline
514   \end{tabular}
515   \label{table:factors results}
516   % is used to refer this table in the text
517 \end{table}
518 \linespread{1.2}
519
520 As shown in the table~(\ref{table:factors results}), when the optimal scaling
521 factor has big value we can gain more energy savings for example as in CG and
522 FT. The opposite happens when the optimal scaling factor is small value as
523 example BT and EP. Our algorithm selects big scaling factor value when the
524 communication and the other slacks times are big and smaller ones in opposite
525 cases. In EP there are no communications inside the iterations. This make our
526 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
527
528 % \clearpage
529 \sectionfont{\large}
530
531 \section{.~Comparing Results}
532
533 In this section, we compare our EPSA algorithm results with Rauber's
534 methods~\cite{3}. He had two scenarios, the first is to reduce energy to optimal
535 level without considering the performance as in EQ~(\ref{eq:sopt}). We refer to
536 this scenario as $Rauber_{E}$. The second scenario is similar to the first
537 except setting the slower task to the maximum frequency (when the scale $S=1$)
538 to keep the performance from degradation as mush as possible. We refer to this
539 scenario as $Rauber_{E-P}$. The comparison is made in tables~(\ref{table:compare
540   Class A},\ref{table:compare Class B},\ref{table:compare Class C}). These
541 tables show the results of our EPSA and Rauber's two scenarios for all the NAS
542 benchmarks programs for classes A,B and C.
543 %\linespread{1}
544 \begin{table}[ht]
545   \caption{Comparing Results for  The NAS Class A}
546   % title of Table
547   \centering
548   \begin{tabular}{ | l | l | l |l | l |l|  }
549     \hline
550     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
551     name &name&value& Saving \%&Degradation \% &Distance
552     \\ \hline
553     % \rowcolor[gray]{0.85}
554     EPSA&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
555     $Rauber_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.5\\ \hline
556     $Rauber_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
557
558     EPSA&MG & 1.47 &27.66&16.82&10.84\\ \hline
559     $Rauber_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
560     $Rauber_{E}$&MG &2.14&34.48&33.65&0.8 \\ \hline
561
562     EPSA&EP &1.19 &25.32&20.79&4.53\\ \hline
563     $Rauber_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
564     $Rauber_{E}$&EP&2.05&42.09&57.59&-15.5\\ \hline
565
566     EPSA&LU&1.56& 39.55 &19.38& 20.17\\ \hline
567     $Rauber_{E-P}$&LU&2.14&45.62&27&18.62 \\ \hline
568     $Rauber_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
569
570     EPSA&BT&1.315& 29.6&20.53&9.07 \\ \hline
571     $Rauber_{E-P}$&BT&2.1&45.53&49.63&-4.1\\ \hline
572     $Rauber_{E}$&BT&2.1&43.93&52.86&-8.93\\ \hline
573
574     EPSA&SP&1.388& 33.51&15.65&17.86 \\ \hline
575     $Rauber_{E-P}$&SP&2.11&45.62&42.52&3.1\\ \hline
576     $Rauber_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
577
578     EPSA&FT&1.25& 25&10.8&14.2 \\ \hline
579     $Rauber_{E-P}$&FT&2.1&39.29&34.3&4.99 \\ \hline
580     $Rauber_{E}$&FT&2.1&37.56&38.21&-0.65\\ \hline
581   \end{tabular}
582   \label{table:compare Class A}
583   % is used to refer this table in the text
584 \end{table}
585 \begin{table}[ht]
586   \caption{Comparing Results for The NAS Class B}
587   % title of Table
588   \centering
589   \begin{tabular}{ | l | l | l |l | l |l|  }
590     \hline
591     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
592     name &name&value& Saving \%&Degradation \% &Distance
593     \\ \hline
594     % \rowcolor[gray]{0.85}
595     EPSA&CG & 1.66 &39.23&16.63&22.6   \\ \hline
596     $Rauber_{E-P}$&CG &2.15 &45.34&27.6&17.74\\ \hline
597     $Rauber_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
598
599     EPSA&MG & 1.47 &34.98&18.35&16.63\\ \hline
600     $Rauber_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
601     $Rauber_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
602
603     EPSA&EP &1.08 &20.29&17.15&3.14 \\ \hline
604     $Rauber_{E-P}$&EP&2&42.38&56.88&-14.5\\ \hline
605     $Rauber_{E}$&EP&2&39.73&59.94&-20.21\\ \hline
606
607     EPSA&LU&1.47&38.57&21.34&17.23 \\ \hline
608     $Rauber_{E-P}$&LU&2.1&43.62&36.51&7.11 \\ \hline
609     $Rauber_{E}$&LU&2.1&43.61&38.54&5.07 \\ \hline
610
611     EPSA&BT&1.315& 29.59&20.88&8.71\\ \hline
612     $Rauber_{E-P}$&BT&2.1&44.53&53.05&-8.52\\ \hline
613     $Rauber_{E}$&BT&2.1&42.93&52.806&-9.876\\ \hline
614
615     EPSA&SP&1.388&33.44&19.24&14.2 \\ \hline
616     $Rauber_{E-P}$&SP&2.15&45.69&43.2&2.49\\ \hline
617     $Rauber_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
618
619     EPSA&FT&1.388&34.4&14.57&19.83 \\ \hline
620     $Rauber_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
621     $Rauber_{E}$&FT&2.13&43.04&37.9&5.14\\ \hline
622   \end{tabular}
623   \label{table:compare Class B}
624   % is used to refer this table in the text
625 \end{table}
626
627 \begin{table}[ht]
628   \caption{Comparing Results for The NAS Class C}
629   % title of Table
630   \centering
631   \begin{tabular}{ | l | l | l |l | l |l|  }
632     \hline
633     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
634     name &name&value& Saving \%&Degradation \% &Distance
635     \\ \hline
636     % \rowcolor[gray]{0.85}
637     EPSA&CG & 1.56 &39.23&14.88&24.35  \\ \hline
638     $Rauber_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
639     $Rauber_{E}$&CG &2.15 &45.36&26.7&18.66\\ \hline
640
641     EPSA&MG & 1.47 &34.97&21.697&13.273\\ \hline
642     $Rauber_{E-P}$&MG &2.15&43.65&40.45&3.2 \\ \hline
643     $Rauber_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
644
645     EPSA&EP &1.04 &22.14&20.73&1.41 \\ \hline
646     $Rauber_{E-P}$&EP&1.92&39.4&56.33&-16.93\\ \hline
647     $Rauber_{E}$&EP&1.92&38.1&56.35&-18.25\\ \hline
648
649     EPSA&LU&1.388&35.83&22.49&13.34 \\ \hline
650     $Rauber_{E-P}$&LU&2.15&44.97&41&3.97 \\ \hline
651     $Rauber_{E}$&LU&2.15&44.97&41.8&3.17 \\ \hline
652
653     EPSA&BT&1.315& 29.6&21.28&8.32\\ \hline
654     $Rauber_{E-P}$&BT&2.13&45.6&49.84&-4.24\\ \hline
655     $Rauber_{E}$&BT&2.13&44.9&55.16&-10.26\\ \hline
656
657     EPSA&SP&1.388&33.48&21.35&12.12\\ \hline
658     $Rauber_{E-P}$&SP&2.1&45.69&43.6&2.09\\ \hline
659     $Rauber_{E}$&SP&2.1&45.75&44.1&1.65\\ \hline
660
661     EPSA&FT&1.47&34.72&19&15.72 \\ \hline
662     $Rauber_{E-P}$&FT&2.04&39.4&37.1&2.3\\ \hline
663     $Rauber_{E}$&FT&2.04&39.35&37.7&1.65\\ \hline
664   \end{tabular}
665 \label{table:compare Class C}
666 % is used to refer this table in the text
667 \end{table}
668 %\linespread{1.2}
669 \clearpage As shown in these tables our scaling factor is not optimal for energy
670 saving such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for
671 both the energy and the performance simultaneously. Our EPSA optimal scaling
672 factors has better simultaneous optimization for both the energy and the
673 performance compared to Rauber's energy-performance method
674 ($Rauber_{E-P}$). Also, in ($Rauber_{E-P}$) method when setting the frequency to
675 maximum value for the slower task lead to a small improvement of the
676 performance. Also the results show that this method keep or improve energy
677 saving. Because of the energy consumption decrease when the execution time
678 decreased while the frequency value increased.
679
680 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
681 percent and the performance degradation percent. Therefore, this means it is the
682 same resultant of our objective function EQ~(\ref{eq:max}). Our algorithm always
683 gives positive energy to performance trade offs while Rauber's method
684 ($Rauber_{E-P}$) gives in some time negative trade offs such as in BT and
685 EP. The positive trade offs with highest values lead to maximum energy savings
686 concatenating with less performance degradation and this the objective of this
687 paper. While the negative trade offs refers to improving energy saving (or may
688 be the performance) while degrading the performance (or may be the energy) more
689 than the first.
690 \begin{figure}[width=\textwidth,height=\textheight,keepaspectratio]
691   \centering
692   \includegraphics[scale=0.60]{compare_class_A.pdf}
693   \includegraphics[scale=0.60]{compare_class_B.pdf}
694   \includegraphics[scale=0.60]{compare_class_c.pdf}
695   % use scale 35 for all to be in the same line
696   \caption{Comparing Our EPSA with Rauber's Methods}
697   \label{fig:compare}
698 \end{figure}
699
700 \clearpage
701 \bibliographystyle{plain}
702 \bibliography{my_reference}
703 \end{document}
704
705 %%% Local Variables:
706 %%% mode: latex
707 %%% TeX-master: t
708 %%% fill-column: 80
709 %%% ispell-local-dictionary: "american"
710 %%% End: