]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge ssh://info.iut-bm.univ-fcomte.fr/mpi-energy
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12
13 \usepackage[autolanguage,np]{numprint}
14 \renewcommand*\npunitcommand[1]{\text{#1}}
15
16 \usepackage{xspace}
17 \usepackage[textsize=footnotesize]{todonotes}
18 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
19
20 \begin{document}
21
22 \title{Dynamic Frequency Scaling for Energy Consumption Reduction in Distributed MPI Programs}
23
24 \author{%
25   \IEEEauthorblockN{%
26     Jean-Claude Charr,
27     Raphaël Couturier,
28     Ahmed Fanfakh and
29     Arnaud Giersch
30   }
31   \IEEEauthorblockA{%
32     FEMTO-ST Institute\\
33     University of Franche-Comté\\
34     IUT de Belfort-Montb\'{e}liard, Rue Engel Gros, BP 27, 90016 Belfort, France\\
35    Fax  : (+33)~3~84~58~77~32\\
36    Email: \{jean-claude.charr, raphael.couturier, ahmed.fanfakh\_badri\_muslim, arnaud.giersch\}@univ-fcomte.fr
37    }
38   }
39
40 \maketitle
41
42 \begin{abstract}
43   Dynamic Voltage Frequency Scaling (DVFS) can be applied to modern CPUs. 
44 This technique is usually used to reduce the energy consumed by a CPU while
45 computing . Indeed, power consumption by a processor at a given instant is
46 exponentially related to its frequency. Thus, decreasing the frequency reduces
47 the power consumed by the CPU. However, it can also significantly affect the
48 performance of the executed program if it is compute bound and a low CPU
49 frequency is selected. The performance degradation ratio can even be higher than
50 the saved energy ratio. Therefore, the chosen scaling factor must give the best possible tradeoff
51 between energy reduction and performance. 
52
53 In this paper we present an algorithm
54 that predicts the energy consumed with each frequency gear and selects the one that
55 gives the best ratio between energy consumption reduction and performance.
56 This algorithm works online without training or profiling and
57 has a very small overhead. It also takes into account synchronous communications between the nodes
58 that are executing the distributed algorithm. The algorithm has been evaluated over the SimGrid simulator
59 while being applied to the NAS parallel benchmark programs. The results of the experiments show that it outperforms other existing scaling factor selection algorithms.
60 \end{abstract}
61
62 \section{Introduction}
63 \label{sec.intro}
64
65 The need and demand for more computing power have been increasing since the birth of the first computing unit and it is not expected to slow
66 down in the coming years. To satisfy this demand, researchers and supercomputers
67 constructors have been regularly increasing the number of computing cores and processors in
68 supercomputers (for example in November 2013, according to the TOP500
69 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
70 millions of cores and delivers more than 33 Tflop/s while consuming 17808
71 kW). This large increase in number of computing cores has led to large energy
72 consumption by these architectures. Moreover, the price of energy is expected to
73 continue its ascent according to the demand. For all these reasons energy
74 reduction became an important topic in the high performance computing field. To
75 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
76 Scaling) operations which reduce dynamically the frequency and voltage of cores
77 and thus their energy consumption. Indeed, modern CPUs offer a set of acceptable frequencies which are usually called gears, and the user or the operating system can modify the frequency of the processor according to its needs. However, DVFS also degrades the
78 performance of computation. Therefore researchers try to reduce the frequency to
79 minimum when processors are idle (waiting for data from other processors or
80 communicating with other processors). Moreover, depending on their objectives
81 they use heuristics to find the best scaling factor during the computation. If
82 they aim for performance they choose the best scaling factor that reduces the
83 consumed energy while affecting as little as possible the performance. On the
84 other hand, if they aim for energy reduction, the chosen scaling factor must
85 produce the most energy efficient execution without considering the degradation
86 of the performance. It is important to notice that lowering the frequency to
87 minimum value does not always give the most energy efficient execution due to energy
88 leakage. The best scaling factor might be chosen during execution (online) or
89 during a pre-execution phase.  In this paper, we present an
90 algorithm that selects a frequency scaling factor that simultaneously takes into
91 consideration  the energy consumption by the CPU and the performance of the application. The
92 main objective of HPC systems is to execute as fast as possible the application. 
93 Therefore, our algorithm selects the scaling factor online with
94 very small footprint. The proposed algorithm takes into account the
95 communication times of the MPI program to choose the scaling factor. This
96 algorithm has ability to predict both energy consumption and execution time over
97 all available scaling factors.  The prediction achieved depends on some
98 computing time information, gathered at the beginning of the runtime.  We apply
99 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
100 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
101 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
102 over an homogeneous distributed memory architecture. Furthermore, we compare the
103 proposed algorithm with Rauber and Rünger methods~\cite{3}.
104 The comparison's results show that our algorithm gives better energy-time tradeoff.
105
106 This paper is organized as follows: Section~\ref{sec.relwork} presents related works
107 from other authors.  Section~\ref{sec.exe} shows the execution of parallel
108 tasks and sources of idle times.  It resumes the energy
109 model of homogeneous platform. Section~\ref{sec.mpip} evaluates the performance
110 of MPI program.  Section~\ref{sec.compet} presents the energy-performance tradeoffs
111 objective function. Section~\ref{sec.optim} demonstrates the proposed energy-performance algorithm. Section~\ref{sec.expe} verifies the performance prediction
112 model and presents the results of the proposed algorithm.  Also, It shows the comparison results. Finally,
113 we conclude in Section~\ref{sec.concl}.
114 \section{Related works}
115 \label{sec.relwork}
116
117 \AG{Consider introducing the models sec.~\ref{sec.exe} maybe before related works}
118
119 In this section, some heuristics to compute the scaling factor are
120 presented and classified into two categories: offline and online methods.
121
122 \subsection{Offline scaling factor selection methods}
123
124 The offline scaling factor selection methods are executed before the runtime of
125 the program. They return static scaling factor values to the processors
126 participating in the execution of the parallel program. On one hand, the scaling
127 factor
128 values could be computed based on information retrieved by analyzing the code of
129 the program and the computing system that will execute it. In ~\cite{40},
130 Azevedo et
131 al. detect during compilation the dependency points between  
132 tasks in a parallel program. This information is then used to lower the frequency of
133 some processors in order to eliminate slack times. A slack time is the period of time during which a processor that have already finished its computation, have to wait
134 for a set of processors to finish their computations and send their results to the
135 waiting processor in order to continue its task that is
136 dependent on the results of computations being executed on other processors.
137 Freeh et al. showed in ~\cite{17} that the 
138 communication times of MPI programs do not change when the frequency is scaled down.
139 On the other hand, some offline scaling factor selection methods use the
140 information gathered from previous full or
141 partial executions of the program. A part or the whole program is usually executed over all the available frequency gears and the the execution time and the energy consumed  with each frequency gear are measured. Then an heuristic or an exact method uses the retrieved information to compute the values of the scaling factor for the processors.  
142    In~\cite{29}, Xie et al. use an exact exponential breadth-first search algorithm to compute the scaling factor values that give the optimal energy reduction while respecting a deadline for a sequential program. They also present a linear heuristic that approximates the optimal solution. In~\cite{8} , Rountree et al. use a linear programming
143 algorithm, while in~\cite{38,34}, Cochran et al. use multi logistic regression algorithm for the same goal. 
144 The main drawback for these methods is that they all require executing a part or the whole program on all frequency gears for each new instance of the same program. 
145
146 \subsection{Online scaling factor selection methods}
147 The online scaling factor selection methods are executed during the runtime of the program. They are usually integrated into iterative programs where the same block of instructions is executed many times.  During the first few iterations, many informations are measured such as the execution time, the energy consumed using a multimeter, the slack times, ... Then a  method will exploit these measurements to compute the scaling factor values for each processor. This operation, measurements and computing new scaling factor, can be repeated as much as needed if the iterations are not regular. Kimura, Peraza, Yu-Liang et al.  ~\cite{11,2,31} used learning methods to select the appropriate scaling factor values  to eliminate the slack times during runtime. However, as seen in ~\cite{39,19}, machine learning methods can take a lot of time to converge when the number of available gears is big. To reduce the impact of slack times,  in~\cite{1}, Lim et al. developed an algorithm that detects the
148 communication sections and changes the frequency during these sections
149 only. This approach might change the frequency of each processor many times per iteration if an iteration
150 contains more than one communication section. In ~\cite{3}, Rauber and Rünger used an analytical model that after measuring the energy consumed and the execution time with the highest frequency gear, it can predict the energy consumed and the execution time for every frequency gear .   These predictions may be used to choose the optimal gear for each processor executing the parallel program to reduce energy consumption. 
151 To maintain the performance of the parallel program , they
152 set the  processor with the biggest load to the highest gear and then compute the scaling  factor values for the rest of the processors. Although this model was built for parallel architectures, it can be adapted  to distributed architectures by taking into account the communications. 
153 The primary contribution of this paper is presenting a new online scaling factor selection method which has the following characteristics :
154 \begin{enumerate}
155 \item Based on Rauber's analytical model to predict the energy consumption and the execution time of the application with different frequency gears. 
156 \item Selects the frequency scaling factor for simultaneously optimizing energy reduction and maintaining performance.
157 \item Well adapted to distributed architectures because it takes into account the communication time.
158 \item Well adapted to distributed applications with imbalanced tasks.
159 \item Has very small footprint when compared to other
160   methods (e.g.,~\cite{19}) and does not require profiling or training as
161   in~\cite{38,34}.
162 \end{enumerate}
163
164
165 \section{Execution and energy of parallel tasks on homogeneous platform} 
166 \label{sec.exe}
167 %\AG{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'', can be deleted if we need space, we can just say we are interested in this paper in homogeneous clusters}
168 \subsection{Parallel tasks execution on homogeneous platform}
169 A homogeneous cluster consists of identical nodes in terms of hardware and software. 
170 Each node has its own memory and at least one processor which can
171 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
172 executed on this model can be either synchronous or asynchronous. In this paper
173 we consider execution of the synchronous tasks on distributed homogeneous
174 platform. These tasks can exchange the data via synchronous message passing.
175 \begin{figure*}[t]
176   \centering
177   \subfloat[Sync. imbalanced communications]{\includegraphics[scale=0.67]{commtasks}\label{fig:h1}}
178   \subfloat[Sync. imbalanced computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
179   \caption{Parallel tasks on homogeneous platform}
180   \label{fig:homo}
181 \end{figure*}
182 Therefore, the execution time of a task consists of the computation time and the
183 communication time. Moreover, the synchronous communications between tasks can
184 lead to slack times while tasks wait at the synchronization barrier for other tasks to
185 finish their tasks (see figure~(\ref{fig:h1})). The imbalanced communications 
186 happen when nodes have to send/receive different amount of data or they communicate
187 with different number of nodes. Another source of idle times is the imbalanced computations.  
188 This happens when processing different amounts of data on each processor  (see figure~(\ref{fig:h2})).  
189 In this case the fastest tasks have to wait at the synchronization barrier for the 
190 slowest ones to begin the next task. In both cases the overall execution time 
191 of the program is the execution time of the slowest task as in EQ~(\ref{eq:T1}).
192 \begin{equation}
193   \label{eq:T1}
194   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
195 \end{equation}
196 where $T_i$ is the execution time of task $i$ and all the tasks are executed concurrently on different processors.
197
198 \subsection{Energy model for homogeneous platform}
199
200 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor to two power metrics: the
201  static and the dynamic power. While the first one is consumed as long as the computing unit is on, the latter is only consumed during computation times. The dynamic power
202 $P_{dyn}$  is related to the switching activity $\alpha$, load capacitance $C_L$,
203 the supply voltage $V$ and operational frequency $f$, as shown in EQ~(\ref{eq:pd}).
204 \begin{equation}
205   \label{eq:pd}
206   P_\textit{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
207 \end{equation}
208 The static power $P_{static}$ captures the leakage power as follows:
209 \begin{equation}
210   \label{eq:ps}
211    P_\textit{static}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
212 \end{equation}
213 where V is the supply voltage, $N_{trans}$ is the number of transistors, $K_{design}$ is a
214 design dependent parameter and $I_{leak}$ is a technology-dependent
215 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
216 of the dynamic and the static powers multiplied by the execution time~\cite{36,15}.
217 \begin{equation}
218   \label{eq:eind}
219    E_\textit{ind} = ( P_\textit{dyn} + P_\textit{static} ) \cdot T
220 \end{equation}
221 DVFS is a process that is allowed in
222 modern processors to reduce the dynamic power by scaling down the voltage and
223 frequency. Its main objective is to reduce the overall energy
224 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
225 supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
226 equation is used to study the change of the dynamic voltage with respect to
227 various frequency values in~\cite{3}. The reduction process of the frequency can be
228 expressed by the scaling factor \emph S which is the ratio between the
229 maximum and the new frequency as in EQ~(\ref{eq:s}).
230 \begin{equation}
231   \label{eq:s}
232  S = \frac{F_\textit{max}}{F_\textit{new}}
233 \end{equation}
234 The value of the scaling factor $S$ is greater than 1 when changing the frequency of the CPU to any
235 new frequency value~(\emph {P-state}) in the governor. The CPU governor is an
236 interface driver supplied by the operating system's kernel to
237 lower a core's frequency.  This factor reduces
238 quadratically the dynamic power which may cause degradation in performance and thus, the increase of the static energy because the execution time is increased~\cite{36}. If the tasks are sorted according to their execution times before scaling in a descending order,   the total energy consumption model for a parallel
239 homogeneous platform, as  presented by Rauber et al.~\cite{3}, can be written as a function of   the scaling factor \emph S,   as in EQ~(\ref{eq:energy}).
240
241 \begin{equation}
242   \label{eq:energy}
243   E = P_\textit{dyn} \cdot S_1^{-2} \cdot
244     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
245     P_\textit{static} \cdot T_1 \cdot S_1 \cdot N
246  \hfill
247 \end{equation}
248 where \emph N is the number of parallel nodes,  $T_i  \  and  \  S_i \  for \  i=1,...,N$ are the execution times and scaling factors of the sorted tasks. Therefore,  $T1$ is the time of the slowest task,  and $S_1$ its scaling factor which should be the highest because they are proportional to
249 the time values $T_i$.  The scaling factors are computed as in EQ~(\ref{eq:si}).
250 \begin{equation}
251   \label{eq:si}
252   S_i = S \cdot \frac{T_1}{T_i}
253       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
254 \end{equation}
255 In this paper we depend on
256 Rauber and Rünger energy model EQ~(\ref{eq:energy}) for two reasons: (1) this
257 model is used for any number of concurrent tasks, and (2) we
258 compare our algorithm with Rauber and Rünger scaling factor selection method which is based on
259 EQ~(\ref{eq:energy}). The optimal scaling factor is computed by minimizing the derivation for this equation which produces EQ~(\ref{eq:sopt}).
260
261 \begin{equation}
262   \label{eq:sopt}
263   S_\textit{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_\textit{dyn}}{P_\textit{static}} \cdot
264     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
265 \end{equation}
266
267 \AG{The following 2 sections can be merged easily}
268
269 \section{Performance evaluation of MPI programs}
270 \label{sec.mpip}
271
272 The performance (execution time) of  parallel synchronous MPI applications depend on
273 the time of the slowest task as in figure~(\ref{fig:homo}).  If there is no communication and the application is not data bounded,   the
274 execution time of a parallel program is linearly proportional to the operational
275 frequency and  any DVFS operation for  energy reduction increases the
276 execution time of the parallel program. Therefore, the scaling factor $S$ is  linearly proportional to the  execution time. However, in most of MPI applications  the processes exchange data. During these
277 communications the processors involved remain idle until the communications are
278 finished. For that reason any change in the frequency has no impact on the time
279 of communication~\cite{17}. The
280 communication time for a task is the summation of  periods of time that  begin with an MPI call for
281 sending or receiving a message till the message is synchronously sent or received. To be able to predict the execution time of MPI program, the communication time and 
282 the computation time for the slower task must be  measured before scaling. These times are used to predict the execution time for any MPI program as a function of 
283 the new scaling factor as in EQ~(\ref{eq:tnew}).
284 \begin{equation}
285   \label{eq:tnew}
286  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
287 \end{equation}
288  In this paper, this prediction method is used to select the best scaling factor for each processor as presented in the next section.
289
290 \section{Performance to energy competition}
291 \label{sec.compet}
292
293 This section demonstrates our approach for choosing the optimal scaling
294 factor. This factor gives maximum energy reduction taking into account the
295 execution times for both computation and communication. The relation
296 between the energy and the performance is nonlinear and complex, because the
297 relation of the energy with scaling factor is nonlinear and with the performance
298 it is linear see~\cite{17}.  Moreover, they are not measured using the same metric.
299 For solving this problem, we normalize the energy by calculating the ratio
300 between the consumed energy with scaled frequency and the consumed energy
301 without scaled frequency:
302 \begin{multline}
303   \label{eq:enorm}
304   E_\textit{Norm} = \frac{ E_\textit{Reduced}}{E_\textit{Original}} \\
305         {} = \frac{P_\textit{dyn} \cdot S_1^{-2} \cdot
306                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
307                P_\textit{static} \cdot T_1 \cdot S_1 \cdot N  }{
308               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
309               P_\textit{static} \cdot T_1 \cdot N }
310 \end{multline}
311 By the same way we can normalize the performance as follows:
312 \begin{equation}
313   \label{eq:pnorm}
314   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}
315           = \frac{T_\textit{Max Comp Old} \cdot S +
316            T_\textit{Max Comm Old}}{T_\textit{Max Comp Old} +
317            T_\textit{Max Comm Old}}
318 \end{equation}
319 The second problem is that the optimization operation for both energy and performance
320 is not in the same direction. In other words, the normalized energy and the
321 performance curves are not in the same direction see figure~(\ref{fig:r2}).
322 While the main goal is to optimize the energy and performance in the same
323 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the
324 scaling factor \emph S reduce both the energy and the performance
325 simultaneously. But the main objective is to produce maximum energy reduction
326 with minimum performance reduction. Many researchers used different strategies
327 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
328 big overhead to the algorithm for selecting the suitable frequency. In this
329 paper we present a method to find the optimal scaling factor \emph S for
330 optimizing both energy and performance simultaneously without adding big
331 overheads.  Our solution for this problem is to make the optimization process
332 have the same direction. Therefore, we inverse the equation of normalize
333 performance as follows:
334 \begin{equation}
335   \label{eq:pnorm_en}
336   P^{-1}_\textit{Norm} = \frac{ T_\textit{Old}}{ T_\textit{New}}
337                = \frac{ T_\textit{Old}}{T_\textit{Max Comp Old} \cdot S +
338                  T_\textit{Max Comm Old}}
339 \end{equation}
340 \begin{figure*}
341   \centering
342   \subfloat[Converted relation.]{%
343     \includegraphics[width=.4\textwidth]{file.eps}\label{fig:r1}}%
344   \qquad%
345   \subfloat[Real relation.]{%
346     \includegraphics[width=.4\textwidth]{file3.eps}\label{fig:r2}}
347   \label{fig:rel}
348   \caption{The energy and performance relation}
349 \end{figure*}
350 Then, we can modelize our objective function as finding the maximum distance
351 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
352 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represent
353 the minimum energy consumption with minimum execution time (better performance)
354 at the same time, see figure~(\ref{fig:r1}). Then our objective function has the
355 following form:
356 \begin{equation}
357   \label{eq:max}
358  Max Dist = \max_{j=1,2,\dots,F} (\overbrace{P^{-1}_\textit{Norm}(S_j)}^{\text{Maximize}} -
359                         \overbrace{E_\textit{Norm}(S_j)}^{\text{Minimize}} )
360 \end{equation}
361 where F is the number of available frequencies. Then we can select the optimal scaling factor that satisfy
362 EQ~(\ref{eq:max}).  Our objective function can work with any energy model or
363 static power values stored in a data file. Moreover, this function works in
364 optimal way when the energy curve has a convex form over the available frequency scaling
365 factors as shown in~\cite{15,3,19}. 
366
367 \section{Optimal scaling factor for performance and energy}
368 \label{sec.optim}
369  Algorithm~\ref{EPSA} compute the optimal scaling factor according to the objective function described above.
370 \begin{algorithm}[tp]
371   \caption{Scaling factor selection algorithm}
372   \label{EPSA}
373   \begin{algorithmic}[1]
374     \State  Initialize the variable $Dist=0$
375     \State Set dynamic and static power values.
376     \State Set $P_{states}$ to the number of available frequencies.
377     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
378     \State Set the variable $F_{diff}$ to the difference between two successive frequencies.
379     \For {$j:=1$   to   $P_{states} $}
380       \State - $F_{new}=F_{new} - F_{diff} $
381       \State - $S = \frac{F_\textit{max}}{F_\textit{new}}$
382       \State - $S_i = S \cdot \frac{T_1}{T_i}= \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i} \                   
383        for \  i=1,...,N$
384       \State - $E_\textit{Norm} = \frac{P_\textit{dyn} \cdot S_1^{-2} \cdot
385                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
386                P_\textit{static} \cdot T_1 \cdot S_1 \cdot N  }{
387               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
388               P_\textit{static} \cdot T_1 \cdot N }$
389       \State -  $P_{NormInv}=T_{old}/T_{new}$ 
390       \If{  $(P_{NormInv}-E_{Norm} > Dist$) }
391         \State $S_{opt} = S$
392         \State $Dist = P_{NormInv} - E_{Norm}$
393       \EndIf
394     \EndFor
395     \State  Return $S_{opt}$
396   \end{algorithmic}
397 \end{algorithm}
398
399 The proposed algorithm works online during the execution time of the MPI
400 program. It selects the optimal scaling factor after gathering the computation and communication times 
401 from the program after one iteration. Then the program changes the new frequencies of the CPUs according to the computed scaling factors. This algorithm has small execution time
402 (between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The algorithm complexity is O(F$\cdot$N), 
403 where F is the number of available frequencies and N is the number of computing nodes.  The algorithm is called just 
404 once during the execution of the program. The DVFS algorithm~(\ref{dvfs}) shows where and when the algorithm is called
405 in the MPI program.
406 %\begin{minipage}{\textwidth}
407
408 \begin{algorithm}[tp]
409   \caption{DVFS}
410   \label{dvfs}
411   \begin{algorithmic}[1]
412  \For {$k:=1$ to $Some-Iterations \; $}
413   \State -Computations Section.
414    \State -Communications Section.
415    \If {$(k=1)$} 
416      \State -Gather all times of computation and\par\hspace{13 pt} communication from each node.
417      \State -Call algorithm~\ref{EPSA} with these times.
418      \State -Compute the new frequency from the \par\hspace{13 pt} returned optimal scaling factor.
419      \State -Set the new frequency to the CPU.
420    \EndIf
421 \EndFor
422 \end{algorithmic}
423 \end{algorithm}
424 After obtaining the optimal scaling factor, the program
425 calculates the new frequency $F_i$ for each task proportionally to its time
426 value $T_i$. By substitution of  EQ~(\ref{eq:s}) in EQ~(\ref{eq:si}), we
427 can calculate the new frequency $F_i$ as follows:
428 \begin{equation}
429   \label{eq:fi}
430   F_i = \frac{F_\textit{max} \cdot T_i}{S_\textit{optimal} \cdot T_\textit{max}}
431 \end{equation}
432 According to this equation all the nodes may have the same frequency value if
433 they have balanced workloads, otherwise, they take different frequencies when
434 having imbalanced workloads. Thus, EQ~(\ref{eq:fi}) adapts the frequency of the CPU to the nodes' workloads to maintain performance.
435
436 \section{Experimental results}
437 \label{sec.expe}
438 Our experiments are executed on the simulator SimGrid/SMPI
439 v3.10. We configure the simulator to use a homogeneous cluster with one core per
440 node. The
441 detailed characteristics of our platform file are shown in the
442 table~(\ref{table:platform}).
443 Each node in the cluster has 18 frequency values
444 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
445 frequencies. The simulated network link is 1 GB Ethernet (TCP/IP). 
446 The backbone of the cluster simulates a high performance switch.
447 \begin{table}[htb]
448   \caption{Platform file parameters}
449   % title of Table
450   \centering
451   \begin{tabular}{|*{7}{l|}}
452     \hline
453     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
454     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
455     \np{2.5} & \np{800} & \np[GBps]{2.25} &\np[$\mu$s]{0.5}& \np[GBps]{1} & \np[$\mu$s]{50} &Full  \\
456     GHz& MHz&  & & &  &Duplex  \\\hline
457   \end{tabular}
458   \label{table:platform}
459 \end{table}
460 \subsection{Performance prediction verification}
461
462 In this section we evaluate the precision of our performance prediction method based on EQ~(\ref{eq:tnew}) by applying it the NAS benchmarks. The NAS programs are executed with the class B option for comparing the
463 real execution time with the predicted execution time. Each program runs offline
464 with all available scaling factors on 8 or 9 nodes (depending on the benchmark) to produce real execution
465 time values. These scaling factors are computed by dividing the maximum
466 frequency by the new one see EQ~(\ref{eq:s}). 
467 \begin{figure*}[t]
468   \centering
469   \includegraphics[width=.328\textwidth]{cg_per.eps}\hfill%
470   \includegraphics[width=.328\textwidth]{mg_pre.eps}\hfill%
471  % \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
472   \includegraphics[width=.328\textwidth]{lu_pre.eps}\hfill%
473   \caption{Comparing predicted to real execution time}
474   \label{fig:pred}
475 \end{figure*}
476 %see Figure~\ref{fig:pred}
477 In our cluster there are 18 available frequency states for each processor. 
478 This lead to 18 run states for each program. We use seven MPI programs of the
479  NAS parallel benchmarks: CG, MG, EP, FT, BT, LU
480 and SP. Figure~(\ref{fig:pred}) presents plots of the real execution times and the simulated ones. The maximum normalized error between the predicted execution time and the real time (SimGrid time) for all programs is between 0.0073 to 0.031. The  better case is for CG and the worse case is for LU. 
481 \subsection{The experimental results for the scaling algorithm }
482 The proposed algorithm was applied to seven MPI programs of the NAS
483 benchmarks (EP, CG, MG, FT, BT, LU and SP) which were run with three classes (A, B and
484 C). For each instance the benchmarks were executed on a number of processors
485 proportional to the size of the class.  Each class represents the problem size
486 ascending from the class A to C. Additionally, depending on some speed up points
487 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
488 respectively. 
489 Depending on EQ~(\ref{eq:energy}), we measure the energy consumption for all
490 the NAS MPI programs while assuming the power dynamic with the highest frequency is equal to \np[W]{20} and
491 the power static is equal to \np[W]{4} for all experiments. These power values were also
492 used by Rauber and Rünger in~\cite{3}.   The results showed that the algorithm selected
493 different scaling factors for each program depending on the communication
494 features of the program as in the plots~(\ref{fig:nas}). These plots illustrate that
495 there are different distances between the normalized energy and the normalized
496 inverted performance curves, because there are different communication features
497 for each benchmark.  When there are little or not communications, the inverted
498 performance curve is very close to the energy curve. Then the distance between
499 the two curves is very small. This leads to small energy savings. The opposite
500 happens when there are a lot of communication, the distance between the two
501 curves is big.  This leads to more energy savings (e.g. CG and FT), see
502 table~(\ref{table:factors results}). All discovered frequency scaling factors
503 optimize both the energy and the performance simultaneously for all  NAS
504 benchmarks. In table~(\ref{table:factors results}), we record all optimal scaling
505 factors results for each benchmark running class C. These scaling factors give the maximum
506 energy saving percent and the minimum performance degradation percent at the
507 same time from all available scaling factors.
508 \begin{figure*}[t]
509   \centering
510   \includegraphics[width=.328\textwidth]{ep.eps}\hfill%
511   \includegraphics[width=.328\textwidth]{cg.eps}\hfill%
512   \includegraphics[width=.328\textwidth]{sp.eps}
513   \includegraphics[width=.328\textwidth]{lu.eps}\hfill%
514   \includegraphics[width=.328\textwidth]{bt.eps}\hfill%
515   \includegraphics[width=.328\textwidth]{ft.eps}
516   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
517   \label{fig:nas}
518 \end{figure*}
519 \begin{table}[htb]
520   \caption{The scaling factors results}
521   % title of Table
522   \centering
523   \begin{tabular}{|l|*{4}{r|}}
524     \hline
525     Program & Optimal & Energy  & Performance&Energy-Perf.\\
526     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
527     CG & 1.56 &39.23&14.88 &24.35\\ \hline
528     MG & 1.47 &34.97&21.70 &13.27 \\ \hline
529     EP & 1.04 &22.14&20.73 &1.41\\ \hline
530     LU & 1.38 &35.83&22.49 &13.34\\ \hline
531     BT & 1.31 &29.60&21.28 &8.32\\ \hline
532     SP & 1.38 &33.48&21.36 &12.12\\ \hline
533     FT & 1.47 &34.72&19.00 &15.72\\ \hline
534   \end{tabular} 
535   \label{table:factors results}
536   % is used to refer this table in the text
537 \end{table}
538 As shown in the table~(\ref{table:factors results}), when the optimal scaling
539 factor has big value we can gain more energy savings for example as in CG and
540 FT. The opposite happens when the optimal scaling factor is small value as
541 example BT and EP. Our algorithm selects big scaling factor value when the
542 communication and the other slacks times are big and smaller ones in opposite
543 cases. In EP there are no communications inside the iterations. This make our
544 algorithm to selects smaller scaling factor values (inducing smaller energy savings).
545
546 \subsection{Results comparison}
547
548 In this section, we compare our scaling factor selection method with Rauber and Rünger
549 methods~\cite{3}. They had two scenarios, the first is to reduce energy to the
550 optimal level without considering the performance as in EQ~(\ref{eq:sopt}). We
551 refer to this scenario as $R_{E}$. The second scenario is similar to the first
552 except setting the slower task to the maximum frequency (when the scale $S=1$)
553 to keep the performance from degradation as mush as possible. We refer to this
554 scenario as $R_{E-P}$. While we refer to our algorithm as EPSA. The comparison is made in tables~(\ref{table:compareA},\ref{table:compareB},\ref{table:compareC}). These
555 tables show the results of our method and Rauber and Rünger scenarios for all the
556 NAS benchmarks programs for classes A,B and C.
557 \begin{table}[p]
558   \caption{Comparing results for  the NAS class A}
559   % title of Table
560   \centering
561   \begin{tabular}{|l|l|*{4}{r|}}
562     \hline
563     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
564     Name &Name&Value& Saving \%&Degradation \% &Distance
565     \\ \hline
566     % \rowcolor[gray]{0.85}
567     $EPSA$&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
568     $R_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.50\\ \hline
569     $R_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
570
571     $EPSA$&MG & 1.47 &27.66&16.82&10.84\\ \hline
572     $R_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
573     $R_{E}$&MG &2.14&34.48&33.65&0.80 \\ \hline
574
575     $EPSA$&EP &1.19 &25.32&20.79&4.53\\ \hline
576     $R_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
577     $R_{E}$&EP&2.05&42.09&57.59&-15.50\\ \hline
578
579     $EPSA$&LU&1.56& 39.55 &19.38& 20.17\\ \hline
580     $R_{E-P}$&LU&2.14&45.62&27.00&18.62 \\ \hline
581     $R_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
582
583     $EPSA$&BT&1.31& 29.60&20.53&9.07 \\ \hline
584     $R_{E-P}$&BT&2.10&45.53&49.63&-4.10\\ \hline
585     $R_{E}$&BT&2.10&43.93&52.86&-8.93\\ \hline
586
587     $EPSA$&SP&1.38& 33.51&15.65&17.86 \\ \hline
588     $R_{E-P}$&SP&2.11&45.62&42.52&3.10\\ \hline
589     $R_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
590
591     $EPSA$&FT&1.25&25.00&10.80&14.20 \\ \hline
592     $R_{E-P}$&FT&2.10&39.29&34.30&4.99 \\ \hline
593     $R_{E}$&FT&2.10&37.56&38.21&-0.65\\ \hline
594   \end{tabular}
595   \label{table:compareA}
596   % is used to refer this table in the text
597 \end{table}
598 \begin{table}[p]
599   \caption{Comparing results for the NAS class B}
600   % title of Table
601   \centering
602   \begin{tabular}{|l|l|*{4}{r|}}
603     \hline
604     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
605     Name &Name&Value& Saving \%&Degradation \% &Distance
606     \\ \hline
607     % \rowcolor[gray]{0.85}
608     $EPSA$&CG & 1.66 &39.23&16.63&22.60   \\ \hline
609     $R_{E-P}$&CG &2.15 &45.34&27.60&17.74\\ \hline
610     $R_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
611
612     $EPSA$ &MG & 1.47 &34.98&18.35&16.63\\ \hline
613     $R_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
614     $R_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
615
616     $EPSA$&EP &1.08 &20.29&17.15&3.14 \\ \hline
617     $R_{E-P}$&EP&2.00&42.38&56.88&-14.50\\ \hline
618     $R_{E}$&EP&2.00&39.73&59.94&-20.21\\ \hline
619
620     $EPSA$&LU&1.47&38.57&21.34&17.23 \\ \hline
621     $R_{E-P}$&LU&2.10&43.62&36.51&7.11 \\ \hline
622     $R_{E}$&LU&2.10&43.61&38.54&5.07 \\ \hline
623
624     $EPSA$&BT&1.31& 29.59&20.88&8.71\\ \hline
625     $R_{E-P}$&BT&2.10&44.53&53.05&-8.52\\ \hline
626     $R_{E}$&BT&2.10&42.93&52.80&-9.87\\ \hline
627
628     $EPSA$&SP&1.38&33.44&19.24&14.20 \\ \hline
629     $R_{E-P}$&SP&2.15&45.69&43.20&2.49\\ \hline
630     $R_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
631
632     $EPSA$&FT&1.38&34.40&14.57&19.83 \\ \hline
633     $R_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
634     $R_{E}$&FT&2.13&43.04&37.90&5.14\\ \hline
635   \end{tabular}
636   \label{table:compareB}
637   % is used to refer this table in the text
638 \end{table}
639
640 \begin{table}[p]
641   \caption{Comparing results for the NAS class C}
642   % title of Table
643   \centering
644   \begin{tabular}{|l|l|*{4}{r|}}
645     \hline
646     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
647     Name &Name&Value& Saving \%&Degradation \% &Distance
648     \\ \hline
649     % \rowcolor[gray]{0.85}
650     $EPSA$&CG & 1.56 &39.23&14.88&24.35  \\ \hline
651     $R_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
652     $R_{E}$&CG &2.15 &45.36&26.70&18.66\\ \hline
653
654     $EPSA$&MG & 1.47 &34.97&21.69&13.27\\ \hline
655     $R_{E-P}$&MG &2.15&43.65&40.45&3.20 \\ \hline
656     $R_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
657
658     $EPSA$&EP &1.04 &22.14&20.73&1.41 \\ \hline
659     $R_{E-P}$&EP&1.92&39.40&56.33&-16.93\\ \hline
660     $R_{E}$&EP&1.92&38.10&56.35&-18.25\\ \hline
661
662     $EPSA$&LU&1.38&35.83&22.49&13.34 \\ \hline
663     $R_{E-P}$&LU&2.15&44.97&41.00&3.97 \\ \hline
664     $R_{E}$&LU&2.15&44.97&41.80&3.17 \\ \hline
665
666     $EPSA$&BT&1.31& 29.60&21.28&8.32\\ \hline
667     $R_{E-P}$&BT&2.13&45.60&49.84&-4.24\\ \hline
668     $R_{E}$&BT&2.13&44.90&55.16&-10.26\\ \hline
669
670     $EPSA$&SP&1.38&33.48&21.35&12.12\\ \hline
671     $R_{E-P}$&SP&2.10&45.69&43.60&2.09\\ \hline
672     $R_{E}$&SP&2.10&45.75&44.10&1.65\\ \hline
673
674     $EPSA$&FT&1.47&34.72&19.00&15.72 \\ \hline
675     $R_{E-P}$&FT&2.04&39.40&37.10&2.30\\ \hline
676     $R_{E}$&FT&2.04&39.35&37.70&1.65\\ \hline
677   \end{tabular}
678 \label{table:compareC}
679 % is used to refer this table in the text
680 \end{table}
681 As shown in tables~\ref{table:compareA},~\ref{table:compareB} and~\ref{table:compareC}, the ($R_{E-P}$) method outperforms the ($R_{E}$) method in terms of performance and energy reduction. The ($R_{E-P}$) method also gives better energy savings than our method. However, although our scaling factor is not optimal for energy reduction, the results in these tables prove that our algorithm returns the best scaling factor that satisfy our objective method : the largest distance between energy reduction and performance degradation. 
682
683 Figure~(\ref{fig:compare}) shows the maximum distance between the energy saving
684 percent and the performance degradation percent.  
685 Negative values mean that one of the two objectives (energy or performance) have been degraded more than the other. The positive tradeoffs with the highest values lead to maximum energy savings
686 while keeping the performance degradation as low as possible. Our algorithm always
687 gives the highest positive energy to performance tradeoffs while Rauber and Rünger method
688 ($R_{E-P}$) gives in some time negative tradeoffs such as in BT and
689 EP.
690 \begin{figure*}[t]
691   \centering
692   \includegraphics[width=.328\textwidth]{compare_class_A.pdf}
693   \includegraphics[width=.328\textwidth]{compare_class_B.pdf}
694   \includegraphics[width=.328\textwidth]{compare_class_c.pdf}
695   \caption{Comparing our method to Rauber and Rünger methods}
696   \label{fig:compare}
697 \end{figure*}
698 \section{Conclusion}
699 \label{sec.concl}
700 In this paper, we have presented a new online scaling factor selection method that optimizes simultaneously the energy and performance of a distributed application running on an homogeneous cluster. It uses the computation and communication times measured at the first iteration to predict energy consumption and the performance of the parallel application at every available frequency. Then, it selects the scaling factor that gives the best tradeoff between energy reduction and performance which is the maximum distance between the energy and the inverted performance curves. To evaluate this method, we have applied it to the NAS benchmarks and it was compared to Rauber and Rünger methods while being executed on the simulator SimGrid. The results showed that our method, outperforms Rauber and Rünger methods in terms of energy-performance ratio. 
701
702 In the near future, we would like to adapt this scaling factor selection method to heterogeneous platforms where each node has different characteristics. In particular, each CPU has different available frequencies, energy consumption and performance. It would be also interesting to develop a new energy model for asynchronous parallel iterative methods where the number of iterations is not known in advance and depends on the global convergence of the iterative system.
703
704
705 \section*{Acknowledgment}
706 As a PhD student, M. Ahmed Fanfakh, would like to thank the University of
707 Babylon (Iraq) for supporting his work.
708
709 % trigger a \newpage just before the given reference
710 % number - used to balance the columns on the last page
711 % adjust value as needed - may need to be readjusted if
712 % the document is modified later
713 %\IEEEtriggeratref{15}
714
715 \bibliographystyle{IEEEtran}
716 \bibliography{IEEEabrv,my_reference}
717 \end{document}
718
719 %%% Local Variables:
720 %%% mode: latex
721 %%% TeX-master: t
722 %%% fill-column: 80
723 %%% ispell-local-dictionary: "american"
724 %%% End:
725
726 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
727 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger