doi = {10.1145/1188455.1188567},
acmid = {1188567},
publisher = {ACM},
- address = {New York, NY, USA},
+ address = {New York, NY, USA}
}
@article{2,
- author = {Peraza, J., Tiwari, A., Laurenzano, M., Carrington, L. and Snavely},
+ author = {Peraza , J. and Tiwari , A. and Laurenzano , M. and Carrington L. and Snavely},
title = "{PMaC}'s green queue: a framework for selecting energy optimal {DVFS} configurations in large scale {MPI} applications",
journal = "Concurrency Computat.: Pract. Exper.DOI: 10.1002/cpe",
pages = "1-20",
numpages = {13},
url = {http://dl.acm.org/citation.cfm?id=2429759.2430090},
acmid = {2430090},
- publisher = {Winter Simulation Conference},
+ publisher = {Winter Simulation Conference}
}
@inproceedings{4,
author = {Jejurikar, Ravindra and Pereira, Cristiano and Gupta, Rajesh},
title = {Leakage Aware Dynamic Voltage Scaling for Real-time Embedded Systems},
- booktitle = {Proceedings of the 41st Annual Design Automation Conference},y scaling factor \emph S has a linear relation with computat
+ booktitle = {Proceedings of the 41 st Annual Design Automation Conference},
series = {DAC '04},
year = {2004},
isbn = {1-58113-828-8},
acmid = {996650},
publisher = {ACM},
address = {New York, NY, USA},
- keywords = {EDF scheduling, critical speed, leakage power, low power scheduling, procrastication, real-time systems},
+ keywords = {EDF scheduling, critical speed, leakage power, low power scheduling, procrastication, real-time systems}
}
author = "Jee Whan Choi and Richard Vuduc",
title = "A roofline model of energy",
institution = "Georgia Institute of Technology",
- %type = "",
- %number = "",
- %address = "",
+ TTtype = "",
+ TTnumber = "",
+ TTaddress = "",
year = "2012",
- %month = "",
- %note = "",
+ TTmonth = "",
+ TTnote = "",
}
@INPROCEEDINGS{8,
address = "USA",
year = "2009",
pages = "227",
- %month = "",
- %note
+ MMmonth = "",
+
}
@INPROCEEDINGS{10,
acmid = {2020813},
publisher = {Sage Publications, Inc.},
address = {Thousand Oaks, CA, USA},
- keywords = {MPI, energy consumption, frequency scaling, hybrid MPI/OpenMP, multicore system, performance characteristics, scientific applications},
+ keywords = {MPI, energy consumption, frequency scaling, hybrid MPI/OpenMP, multicore system, performance characteristics, scientific applications}
}
@ARTICLE{13,
acmid = {1331341},
publisher = {ACM},
address = {New York, NY, USA},
- keywords = {DVS system, Dynamic task scheduling, energy minimization, optimal scaling factor, real time},
+ keywords = {DVS system, Dynamic task scheduling, energy minimization, optimal scaling factor, real time}
}
@inproceedings{16,
doi = {10.1109/ICPP.2007.39},
acmid = {1306033},
publisher = {IEEE Computer Society},
- address = {Washington, DC, USA},
+ address = {Washington, DC, USA}
}
@inproceedings{17,
doi = {10.1109/IPDPS.2005.214},
acmid = {1054466},
publisher = {IEEE Computer Society},
- address = {Washington, DC, USA},
+ address = {Washington, DC, USA}
}
@INPROCEEDINGS{18,
pages={1-12},
keywords={message passing;parallel algorithms;power aware computing;HPC environment;dynamic concurrency throttling;dynamic voltage-and-frequency scaling;high performance computing;hybrid MPI-OpenMP computing;hybrid programming models;large-scale distributed systems;message passing interface;parallel programs;power-aware computing;power-aware performance prediction model;Concurrent computing;Discrete cosine transforms;Dynamic programming;Dynamic voltage scaling;Frequency;Heuristic algorithms;Large-scale systems;Multicore processing;Power system modeling;Predictive models;MPI;OpenMP;performance modeling;power-aware high -performance computing},
doi={10.1109/IPDPS.2010.5470463},
-ISSN={1530-2075},}Fen
+ISSN={1530-2075}
+}
+
@inproceedings{19,
author = {Hao Shen and
year = {2012},
pages = {747-754},
ee = {http://dx.doi.org/10.1109/ISQED.2012.6187575},
- crossref = {DBLP:conf/isqed/2012},
- bibsource = {DBLP, http://dblp.uni-trier.de}
+ CCcrossref = {DBLP:conf/isqed/2012},
+ CCbibsource = {DBLP, http://dblp.uni-trier.de}
}
acmid = {1123006},
publisher = {ACM},
address = {New York, NY, USA},
- keywords = {MPI, energy, modeling, power, prediction},
+ keywords = {MPI, energy, modeling, power, prediction}
}
@inproceedings{21,
doi = {10.1109/SC.2005.57},
acmid = {1105799},
publisher = {IEEE Computer Society},
- address = {Washington, DC, USA},
+ address = {Washington, DC, USA}
}
doi = {10.1109/IPDPS.2005.346},
acmid = {1054376},
publisher = {IEEE Computer Society},
- address = {Washington, DC, USA},
+ address = {Washington, DC, USA}
}
@inproceedings{24,
acmid = {2033356},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
- keywords = {benchmarking, dynamic voltage frequency scaling, energy optimization, high performance computing, memory latency},
+ keywords = {benchmarking, dynamic voltage frequency scaling, energy optimization, high performance computing, memory latency}
}
@article{26,
acmid = {1998949},
publisher = {Academic Press, Inc.},
address = {Orlando, FL, USA},
- keywords = {DVFS, Energy efficiency, HPCS, Scheduling},
+ keywords = {DVFS, Energy efficiency, HPCS, Scheduling}
}
@article{27,
acmid = {1656937},
publisher = {IEEE Press},
address = {Piscataway, NJ, USA},
- keywords = {Dynamic voltage frequency scaling, dynamic voltage frequency scaling, energy-performance trade-off, online learning, power management},
+ keywords = {Dynamic voltage frequency scaling, dynamic voltage frequency scaling, energy-performance trade-off, online learning, power management}
}
@INPROCEEDINGS{28,
doi = {http://doi.ieeecomputersociety.org/10.1109/L-CA.2013.1},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA},
+}
@article{32,
title = "Energy-aware simulation with \{DVFS\} ",
url = {http://dl.acm.org/citation.cfm?id=2132325.2132464},
acmid = {2132464},
publisher = {IEEE Press},
- address = {Piscataway, NJ, USA},
+ address = {Piscataway, NJ, USA}
}
@article{35,
doi = {10.1109/MC.2003.1250885},
acmid = {957974},
publisher = {IEEE Computer Society Press},
- address = {Los Alamitos, CA, USA},
+ address = {Los Alamitos, CA, USA}
}
@inproceedings{37,
doi = {10.1145/2155620.2155641},
acmid = {2155641},
publisher = {ACM},
- address = {New York, NY, USA},
+ address = {New York, NY, USA}
}
@INPROCEEDINGS{39,
url = {http://dl.acm.org/citation.cfm?id=882452.874373},
acmid = {874373},
publisher = {IEEE Computer Society},
- address = {Washington, DC, USA},
+ address = {Washington, DC, USA}
}
@inproceedings{41,
doi = {10.1109/MICRO.2012.23},
acmid = {2457493},
publisher = {IEEE Computer Society},
- address = {Washington, DC, USA},
+ address = {Washington, DC, USA}
}
+
@ARTICLE{42,
author={Dhiman, G. and Rosing, T.S.},
journal={Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on},
ISSN={0278-0070},}
@MISC{43,
-
- title = {Top 500 Supercomputers Sites. http://www.top500.org}
+ author = {Top 500 Supercomputers Sites},
+ title = {http://www.top500.org}
}
}
-@ONLINE{44,
+@MISC{44,
author = "NASA Advanced Supercomputing Division ",
title = "{NAS} Parallel Benchmarks. https://www.nas.nasa.gov/publications/npb.html ",
month = "March",
MPI program calls the EPSA algorithm to choose the new frequency using the
optimal scaling factor. Then the program set the new frequency to the
system. The algorithm is called just one time during the execution of the
-program. The following example shows where and when the EPSA algorithm is called
-in the MPI program :
+program. The DVFS algorithm~(\ref{dvfs}) shows where and when the EPSA algorithm is called
+in the MPI program.
%\begin{minipage}{\textwidth}
%\AG{Use the same format as for Algorithm~\ref{EPSA}}
\caption{DVFS}
\label{dvfs}
\begin{algorithmic}
- \For {$J:=1$ to $Some_iterations Do$}
+ \For {$J:=1$ to $Some-Iterations \; $}
\State -Computations Section.
\State -Communications Section.
\If {$(J==1)$}
\hline
Max & Min & Backbone & Backbone&Link &Link& Sharing \\
Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy \\ \hline
- 2.5 &800 & 2.25 GBps &5E-7 s & 1 GBps & 5E-5 s&Full \\
+ 2.5 &800 & 2.25 GBps &$5\times 10^{-7} s$& 1 GBps & $5\times 10^{-5}$ s&Full \\
GHz& MHz& & & & &Duplex \\\hline
\end{tabular}
\label{table:platform}
\hline
Program & Optimal & Energy & Performance&Energy-Perf.\\
Name & Scaling Factor& Saving \%&Degradation \% &Distance \\ \hline
- CG & 1.56 &39.23 & 14.88 & 24.35\\ \hline
- MG & 1.47 &34.97&21.7& 13.27 \\ \hline
+ CG & 1.56 &39.23&14.88 &24.35\\ \hline
+ MG & 1.47 &34.97&21.70 &13.27 \\ \hline
EP & 1.04 &22.14&20.73 &1.41\\ \hline
LU & 1.38 &35.83&22.49 &13.34\\ \hline
BT & 1.31 &29.60&21.28 &8.32\\ \hline
- SP & 1.38 &33.48 &21.36&12.12\\ \hline
- FT & 1.47 &34.72 &19.00&15.72\\ \hline
+ SP & 1.38 &33.48&21.36 &12.12\\ \hline
+ FT & 1.47 &34.72&19.00 &15.72\\ \hline
\end{tabular}
\label{table:factors results}
% is used to refer this table in the text
\label{fig:compare}
\end{figure}
-\AG{\texttt{bibtex} gives many errors, please correct them}
+\AG{\texttt{bibtex} gives many errors, please correct them !! Its correct }
\clearpage
\bibliographystyle{plain}
\bibliography{my_reference}