frequency:
\begin{multline}
\label{eq:enorm}
- \Enorm(S) = \frac{ \Ereduced}{\Eoriginal} \\
- {} = \frac{\Pdyn \cdot S^{-2} \cdot
+ \Enorm = \frac{ \Ereduced}{\Eoriginal} \\
+ {} = \frac{\Pdyn \cdot S_1^{-2} \cdot
\left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
- \Pstatic \cdot T_1 \cdot S \cdot N}{
+ \Pstatic \cdot T_1 \cdot S_1 \cdot N}{
\Pdyn \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
\Pstatic \cdot T_1 \cdot N }
\end{multline}
In the same way we can normalize the performance as follows:
\begin{equation}
\label{eq:pnorm}
- \Pnorm(S) = \frac{\Tnew}{\Told}
- = \frac{\TmaxCompOld \cdot S + \TmaxCommOld}{
+ \Pnorm = \frac{\Tnew}{\Told}
+ = \frac{\TmaxCompOld \cdot S + \TmaxCommOld}{
\TmaxCompOld + \TmaxCommOld}
\end{equation}
The second problem is that the optimization operation for both energy and
follows:
\begin{equation}
\label{eq:pnorm_en}
- \Pnorm^{-1}(S) = \frac{ \Told}{ \Tnew}
+ \Pnorm^{-1} = \frac{ \Told}{ \Tnew}
= \frac{\TmaxCompOld +
\TmaxCommOld}{\TmaxCompOld \cdot S +
\TmaxCommOld}
\For {$j = 2$ to $\Pstates$}
\State $\Fnew \gets \Fnew - \Fdiff$
\State $S \gets \Fmax / \Fnew$
+ \State $S_i \gets S \cdot \frac{T_1}{T_i}
+ = \frac{\Fmax}{\Fnew} \cdot \frac{T_1}{T_i}$
+ for $i=1,\dots,N$
\State $\Enorm \gets
- \frac{\Pdyn \cdot S^{-2} \cdot
+ \frac{\Pdyn \cdot S_1^{-2} \cdot
\left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
- \Pstatic \cdot T_1 \cdot S \cdot N }{
+ \Pstatic \cdot T_1 \cdot S_1 \cdot N }{
\Pdyn \cdot
\left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
\Pstatic \cdot T_1 \cdot N }$