-\begin{equation} \label{eq:enorm}
- E_{Norm}=\displaystyle\frac{E_{Reduced}}{E_{Orginal}}= \frac{\displaystyle \;P_{dyn}\,.\,S_i^{-2}\,.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,.\,S_i\;\,.\,N }{\displaystyle \;P_{dyn}\,.\,(T_1+\sum\limits_{i=2}^{N}\frac{T_i^3}{T_1^2})+\;P_{static}\,.\,T_1\,\,.\,N }
+\begin{equation}
+ \label{eq:enorm}
+ E_{Norm} = \frac{E_{Reduced}}{E_{Orginal}}
+ = \frac{ P_{dyn} \cdot S_i^{-2} \cdot
+ \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
+ P_{static} \cdot T_1 \cdot S_i \cdot N }{
+ P_{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
+ P_{static} \cdot T_1\, \cdot N }