]> AND Private Git Repository - mpi-energy.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Use \linewidth to compute sizes for images.
authorArnaud Giersch <arnaud.giersch@iut-bm.univ-fcomte.fr>
Fri, 16 May 2014 14:44:13 +0000 (16:44 +0200)
committerArnaud Giersch <arnaud.giersch@iut-bm.univ-fcomte.fr>
Fri, 16 May 2014 14:44:13 +0000 (16:44 +0200)
paper.tex

index 2838f2db74b4ad49a12bba6ccf8179641a4700ec..f41699c7568500238ad5e43a91cb1563b3b3413a 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -360,10 +360,9 @@ performance as follows:
 \begin{figure}
   \centering
   \subfloat[Converted relation.]{%
-    \includegraphics[width=.24\textwidth]{fig/file}\label{fig:r1}}%
-%  \quad%
+    \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}%
   \subfloat[Real relation.]{%
-    \includegraphics[width=.24\textwidth]{fig/file3}\label{fig:r2}}
+    \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}}
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure}
@@ -501,10 +500,10 @@ execution time values.  These scaling factors are computed by dividing the
 maximum frequency by the new one see EQ~(\ref{eq:s}).
 \begin{figure}
   \centering
-  \includegraphics[width=.24\textwidth]{fig/cg_per}\hfill%
- % \includegraphics[width=.328\textwidth]{fig/mg_pre}\hfill%
- % \includegraphics[width=.4\textwidth]{fig/bt_pre}\qquad%
-   \includegraphics[width=.24\textwidth]{fig/lu_pre}\hfill%
+  \includegraphics[width=.5\linewidth]{fig/cg_per}\hfill%
+ % \includegraphics[width=.5\linewidth]{fig/mg_pre}\hfill%
+ % \includegraphics[width=.5\linewidth]{fig/bt_pre}\qquad%
+   \includegraphics[width=.5\linewidth]{fig/lu_pre}\hfill%
   \caption{Comparing predicted to real execution times}
   \label{fig:pred}
 \end{figure}
@@ -546,12 +545,12 @@ factors give the maximum energy saving percentage and the minimum performance
 degradation percentage at the same time from all available scaling factors.
 \begin{figure*}[t]
   \centering
-  \includegraphics[width=.33\textwidth]{fig/ep}\hfill%
-  \includegraphics[width=.33\textwidth]{fig/cg}\hfill%
- % \includegraphics[width=.328\textwidth]{fig/sp}
- %  \includegraphics[width=.328\textwidth]{fig/lu}\hfill%
-  \includegraphics[width=.33\textwidth]{fig/bt}\hfill%
- % \includegraphics[width=.328\textwidth]{fig/ft}
+  \includegraphics[width=.33\linewidth]{fig/ep}\hfill%
+  \includegraphics[width=.33\linewidth]{fig/cg}\hfill%
+ % \includegraphics[width=.328\linewidth]{fig/sp}
+ %  \includegraphics[width=.328\linewidth]{fig/lu}\hfill%
+  \includegraphics[width=.33\linewidth]{fig/bt}
+ % \includegraphics[width=.328\linewidth]{fig/ft}
   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
   \label{fig:nas}
 \end{figure*}
@@ -635,9 +634,9 @@ while Rauber and Rünger's method, ($R_{E-P}$), gives sometimes negative
 trade-offs such as in BT and EP.
 \begin{figure}[t]
   \centering
-%  \includegraphics[width=.328\textwidth]{fig/compare_class_A}
-%  \includegraphics[width=.328\textwidth]{fig/compare_class_B}
-  \includegraphics[width=.49\textwidth]{fig/compare_class_C}
+%  \includegraphics[width=.328\linewidth]{fig/compare_class_A}
+%  \includegraphics[width=.328\linewidth]{fig/compare_class_B}
+  \includegraphics[width=\linewidth]{fig/compare_class_C}
   \caption{Comparing our method to Rauber and Rünger's methods}
   \label{fig:compare}
 \end{figure}