]> AND Private Git Repository - mpi-energy2.git/blob - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Change type for reference (and make the author names appear).
[mpi-energy2.git] / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{algorithm}
9 \usepackage{subfig}
10 \usepackage{amsmath}
11 \usepackage{url}
12 \DeclareUrlCommand\email{\urlstyle{same}}
13
14 \usepackage[autolanguage,np]{numprint}
15 \AtBeginDocument{%
16   \renewcommand*\npunitcommand[1]{\text{#1}}
17   \npthousandthpartsep{}}
18
19 \usepackage{xspace}
20 \usepackage[textsize=footnotesize]{todonotes}
21 \newcommand{\AG}[2][inline]{%
22   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
23 \newcommand{\JC}[2][inline]{%
24   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
27
28 %% used to put some subscripts lower, and make them more legible
29 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
30
31 \newcommand{\CL}{\Xsub{C}{L}}
32 \newcommand{\Dist}{\mathit{Dist}}
33 \newcommand{\EdNew}{\Xsub{E}{dNew}}
34 \newcommand{\Eind}{\Xsub{E}{ind}}
35 \newcommand{\Enorm}{\Xsub{E}{Norm}}
36 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
37 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
38 \newcommand{\Es}{\Xsub{E}{S}}
39 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
40 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
41 \newcommand{\Fnew}{\Xsub{F}{new}}
42 \newcommand{\Ileak}{\Xsub{I}{leak}}
43 \newcommand{\Kdesign}{\Xsub{K}{design}}
44 \newcommand{\MaxDist}{\mathit{Max}\Dist}
45 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
46 \newcommand{\Ntrans}{\Xsub{N}{trans}}
47 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
48 \newcommand{\PdNew}{\Xsub{P}{dNew}}
49 \newcommand{\PdOld}{\Xsub{P}{dOld}}
50 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
51 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
52 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
53 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
54 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
55 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
56 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
57 \newcommand{\Tnew}{\Xsub{T}{New}}
58 \newcommand{\Told}{\Xsub{T}{Old}}
59
60 \begin{document}
61
62 \title{Energy Consumption Reduction with DVFS for \\
63   Message Passing Iterative Applications on \\
64   Heterogeneous Architectures}
65
66 \author{%
67   \IEEEauthorblockN{%
68     Jean-Claude Charr,
69     Raphaël Couturier,
70     Ahmed Fanfakh and
71     Arnaud Giersch
72   }
73   \IEEEauthorblockA{%
74     FEMTO-ST Institute, University of Franche-Comté\\
75     IUT de Belfort-Montbéliard,
76     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
77     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
78     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
79     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
80    }
81   }
82
83 \maketitle
84
85 \begin{abstract}
86   Computing platforms are consuming more and more energy due to the increasing
87   number of nodes composing them.  To minimize the operating costs of these
88   platforms many techniques have been used. Dynamic voltage and frequency
89   scaling (DVFS) is one of them. It reduces the frequency of a CPU to lower its
90   energy consumption.  However, lowering the frequency of a CPU may increase
91   the execution time of an application running on that processor.  Therefore,
92   the frequency that gives the best trade-off between the energy consumption and
93   the performance of an application must be selected.
94
95   In this paper, a new online frequency selecting algorithm for heterogeneous
96   platforms is presented.  It selects the frequencies and tries to give the best
97   trade-off between energy saving and performance degradation, for each node
98   computing the message passing iterative application. The algorithm has a small
99   overhead and works without training or profiling. It uses a new energy model
100   for message passing iterative applications running on a heterogeneous
101   platform. The proposed algorithm is evaluated on the SimGrid simulator while
102   running the NAS parallel benchmarks.  The experiments show that it reduces the
103   energy consumption by up to \np[\%]{35} while limiting the performance
104   degradation as much as possible.  Finally, the algorithm is compared to an
105   existing method, the comparison results showing that it outperforms the
106   latter.
107
108 \end{abstract}
109
110 \section{Introduction}
111 \label{sec.intro}
112
113 The need for more computing power is continually increasing. To partially
114 satisfy this need, most supercomputers constructors just put more computing
115 nodes in their platform. The resulting platforms may achieve higher floating
116 point operations per second (FLOPS), but the energy consumption and the heat
117 dissipation are also increased.  As an example, the Chinese supercomputer
118 Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 list
119 \cite{TOP500_Supercomputers_Sites}.  However, it was also the most power hungry
120 platform with its over 3 million cores consuming around 17.8 megawatts.
121 Moreover, according to the U.S.  annual energy outlook 2014
122 \cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour
123 was approximately equal to \$70.  Therefore, the price of the energy consumed by
124 the Tianhe-2 platform is approximately more than \$10 million each year.  The
125 computing platforms must be more energy efficient and offer the highest number
126 of FLOPS per watt possible, such as the L-CSC from the GSI Helmholtz Center
127 which became the top of the Green500 list in November 2014 \cite{Green500_List}.
128 This heterogeneous platform executes more than 5 GFLOPS per watt while consuming
129 57.15 kilowatts.
130
131 Besides platform improvements, there are many software and hardware techniques
132 to lower the energy consumption of these platforms, such as scheduling, DVFS,
133 \dots{} DVFS is a widely used process to reduce the energy consumption of a
134 processor by lowering its frequency
135 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
136 the number of FLOPS executed by the processor which may increase the execution
137 time of the application running over that processor.  Therefore, researchers use
138 different optimization strategies to select the frequency that gives the best
139 trade-off between the energy reduction and performance degradation ratio. In
140 \cite{Our_first_paper}, a frequency selecting algorithm was proposed to reduce
141 the energy consumption of message passing iterative applications running over
142 homogeneous platforms.  The results of the experiments show significant energy
143 consumption reductions. In this paper, a new frequency selecting algorithm
144 adapted for heterogeneous platform is presented. It selects the vector of
145 frequencies, for a heterogeneous platform running a message passing iterative
146 application, that simultaneously tries to offer the maximum energy reduction and
147 minimum performance degradation ratio. The algorithm has a very small overhead,
148 works online and does not need any training or profiling.
149
150 This paper is organized as follows: Section~\ref{sec.relwork} presents some
151 related works from other authors.  Section~\ref{sec.exe} describes how the
152 execution time of message passing programs can be predicted.  It also presents
153 an energy model that predicts the energy consumption of an application running
154 over a heterogeneous platform. Section~\ref{sec.compet} presents the
155 energy-performance objective function that maximizes the reduction of energy
156 consumption while minimizing the degradation of the program's performance.
157 Section~\ref{sec.optim} details the proposed frequency selecting algorithm then
158 the precision of the proposed algorithm is verified.  Section~\ref{sec.expe}
159 presents the results of applying the algorithm on the NAS parallel benchmarks
160 and executing them on a heterogeneous platform. It shows the results of running
161 three different power scenarios and comparing them. Moreover, it also shows the
162 comparison results between the proposed method and an existing method.  Finally,
163 in Section~\ref{sec.concl} the paper ends with a summary and some future works.
164
165 \section{Related works}
166 \label{sec.relwork}
167
168 DVFS is a technique used in modern processors to scale down both the voltage and
169 the frequency of the CPU while computing, in order to reduce the energy
170 consumption of the processor. DVFS is also allowed in GPUs to achieve the same
171 goal. Reducing the frequency of a processor lowers its number of FLOPS and may
172 degrade the performance of the application running on that processor, especially
173 if it is compute bound. Therefore selecting the appropriate frequency for a
174 processor to satisfy some objectives while taking into account all the
175 constraints, is not a trivial operation.  Many researchers used different
176 strategies to tackle this problem. Some of them developed online methods that
177 compute the new frequency while executing the application, such
178 as~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}.
179 Others used offline methods that may need to run the application and profile
180 it before selecting the new frequency, such
181 as~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}.
182 The methods could be heuristics, exact or brute force methods that satisfy
183 varied objectives such as energy reduction or performance. They also could be
184 adapted to the execution's environment and the type of the application such as
185 sequential, parallel or distributed architecture, homogeneous or heterogeneous
186 platform, synchronous or asynchronous application, \dots{}
187
188 In this paper, we are interested in reducing energy for message passing
189 iterative synchronous applications running over heterogeneous platforms.  Some
190 works have already been done for such platforms and they can be classified into
191 two types of heterogeneous platforms:
192 \begin{itemize}
193 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
194 \item the platform is only composed of heterogeneous CPUs.
195 \end{itemize}
196
197 For the first type of platform, the computing intensive parallel tasks are
198 executed on the GPUs and the rest are executed on the CPUs.  Luley et
199 al.~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed a
200 heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
201 goal was to maximize the energy efficiency of the platform during computation by
202 maximizing the number of FLOPS per watt generated.
203 In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et
204 al. developed a scheduling algorithm that distributes workloads proportional to
205 the computing power of the nodes which could be a GPU or a CPU. All the tasks
206 must be completed at the same time.  In~\cite{Rong_Effects.of.DVFS.on.K20.GPU},
207 Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
208 DVFS gave better energy and performance efficiency than other clusters only
209 composed of CPUs.
210
211 The work presented in this paper concerns the second type of platform, with
212 heterogeneous CPUs.  Many methods were conceived to reduce the energy
213 consumption of this type of platform.  Naveen et
214 al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
215 minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
216 the sum of slack times that happen during synchronous communications) by
217 dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.
218 Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed an
219 algorithm that divides the executed tasks into two types: the critical and non
220 critical tasks. The algorithm scales down the frequency of non critical tasks
221 proportionally to their slack and communication times while limiting the
222 performance degradation percentage to less than \np[\%]{10}.
223 In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
224 heterogeneous cluster composed of two types of Intel and AMD processors. They
225 use a gradient method to predict the impact of DVFS operations on performance.
226 In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and
227 \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, the best
228 frequencies for a specified heterogeneous cluster are selected offline using
229 some heuristic.  Chen et
230 al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
231 programming approach to minimize the power consumption of heterogeneous servers
232 while respecting given time constraints.  This approach had considerable
233 overhead.  In contrast to the above described papers, this paper presents the
234 following contributions :
235 \begin{enumerate}
236 \item two new energy and performance models for message passing iterative
237   synchronous applications running over a heterogeneous platform. Both models
238   take into account communication and slack times. The models can predict the
239   required energy and the execution time of the application.
240
241 \item a new online frequency selecting algorithm for heterogeneous
242   platforms. The algorithm has a very small overhead and does not need any
243   training or profiling. It uses a new optimization function which
244   simultaneously maximizes the performance and minimizes the energy consumption
245   of a message passing iterative synchronous application.
246
247 \end{enumerate}
248
249 \section{The performance and energy consumption measurements on heterogeneous architecture}
250 \label{sec.exe}
251
252 \subsection{The execution time of message passing distributed iterative
253   applications on a heterogeneous platform}
254
255 In this paper, we are interested in reducing the energy consumption of message
256 passing distributed iterative synchronous applications running over
257 heterogeneous platforms. A heterogeneous platform is defined as a collection of
258 heterogeneous computing nodes interconnected via a high speed homogeneous
259 network. Therefore, each node has different characteristics such as computing
260 power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
261 have the same network bandwidth and latency.
262
263 \begin{figure}[!t]
264   \centering
265   \includegraphics[scale=0.6]{fig/commtasks}
266   \caption{Parallel tasks on a heterogeneous platform}
267   \label{fig:heter}
268 \end{figure}
269
270 The overall execution time of a distributed iterative synchronous application
271 over a heterogeneous platform consists of the sum of the computation time and
272 the communication time for every iteration on a node. However, due to the
273 heterogeneous computation power of the computing nodes, slack times may occur
274 when fast nodes have to wait, during synchronous communications, for the slower
275 nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
276 overall execution time of the program is the execution time of the slowest task
277 which has the highest computation time and no slack time.
278
279 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
280 modern processors, that reduces the energy consumption of a CPU by scaling
281 down its voltage and frequency.  Since DVFS lowers the frequency of a CPU
282 and consequently its computing power, the execution time of a program running
283 over that scaled down processor may increase, especially if the program is
284 compute bound.  The frequency reduction process can be  expressed by the scaling
285 factor S which is the ratio between  the maximum and the new frequency of a CPU
286 as in (\ref{eq:s}).
287 \begin{equation}
288   \label{eq:s}
289   S = \frac{\Fmax}{\Fnew}
290 \end{equation}
291 The execution time of a compute bound sequential program is linearly
292 proportional to the frequency scaling factor $S$.  On the other hand, message
293 passing distributed applications consist of two parts: computation and
294 communication.  The execution time of the computation part is linearly
295 proportional to the frequency scaling factor $S$ but the communication time is
296 not affected by the scaling factor because the processors involved remain idle
297 during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  The
298 communication time for a task is the summation of periods of time that begin
299 with an MPI call for sending or receiving a message until the message is
300 synchronously sent or received.
301
302 Since in a heterogeneous platform each node has different characteristics,
303 especially different frequency gears, when applying DVFS operations on these
304 nodes, they may get different scaling factors represented by a scaling vector:
305 $(S_1, S_2,\dots, S_N)$ where $S_i$ is the scaling factor of processor $i$. To
306 be able to predict the execution time of message passing synchronous iterative
307 applications running over a heterogeneous platform, for different vectors of
308 scaling factors, the communication time and the computation time for all the
309 tasks must be measured during the first iteration before applying any DVFS
310 operation. Then the execution time for one iteration of the application with any
311 vector of scaling factors can be predicted using (\ref{eq:perf}).
312 \begin{equation}
313   \label{eq:perf}
314   \Tnew = \max_{i=1,2,\dots,N} ({\TcpOld[i]} \cdot S_{i}) +  \MinTcm
315 \end{equation}
316 Where:
317 \begin{equation}
318   \label{eq:perf2}
319   \MinTcm = \min_{i=1,2,\dots,N} (\Tcm[i])
320 \end{equation}
321 where $\TcpOld[i]$ is the computation time of processor $i$ during the first
322 iteration and $\MinTcm$ is the communication time of the slowest processor from
323 the first iteration.  The model computes the maximum computation time with
324 scaling factor from each node added to the communication time of the slowest
325 node. It means only the communication time without any slack time is taken into
326 account.  Therefore, the execution time of the iterative application is equal to
327 the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
328 number of iterations of that application.
329
330 This prediction model is developed from the model to predict the execution time
331 of message passing distributed applications for homogeneous
332 architectures~\cite{Our_first_paper}.  The execution time prediction model is
333 used in the method to optimize both the energy consumption and the performance
334 of iterative methods, which is presented in the following sections.
335
336 \subsection{Energy model for heterogeneous platform}
337
338 Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
339   Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
340   Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
341 a processor into two power metrics: the static and the dynamic power.  While the
342 first one is consumed as long as the computing unit is turned on, the latter is
343 only consumed during computation times.  The dynamic power $\Pd$ is related to
344 the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
345 and operational frequency $F$, as shown in (\ref{eq:pd}).
346 \begin{equation}
347   \label{eq:pd}
348   \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
349 \end{equation}
350 The static power $\Ps$ captures the leakage power as follows:
351 \begin{equation}
352   \label{eq:ps}
353    \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
354 \end{equation}
355 where V is the supply voltage, $\Ntrans$ is the number of transistors,
356 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
357 technology dependent parameter.  The energy consumed by an individual processor
358 to execute a given program can be computed as:
359 \begin{equation}
360   \label{eq:eind}
361   \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
362 \end{equation}
363 where $T$ is the execution time of the program, $\Tcp$ is the computation
364 time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
365 communication and no slack time.
366
367 The main objective of DVFS operation is to reduce the overall energy
368 consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  The operational
369 frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
370 F$ with some constant $\beta$.~This equation is used to study the change of the
371 dynamic voltage with respect to various frequency values
372 in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction process of the
373 frequency can be expressed by the scaling factor $S$ which is the ratio between
374 the maximum and the new frequency as in (\ref{eq:s}).  The CPU governors are
375 power schemes supplied by the operating system's kernel to lower a core's
376 frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
377 follows:
378 \begin{equation}
379   \label{eq:fnew}
380    \Fnew = S^{-1} \cdot \Fmax
381 \end{equation}
382 Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
383 equation for dynamic power consumption:
384 \begin{multline}
385   \label{eq:pdnew}
386    \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
387    {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
388 \end{multline}
389 where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the
390 new frequency and the maximum frequency respectively.
391
392 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
393 $S^{-3}$ when reducing the frequency by a factor of
394 $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
395 proportional to the frequency of a CPU, the computation time is increased
396 proportionally to $S$.  The new dynamic energy is the dynamic power multiplied
397 by the new time of computation and is given by the following equation:
398 \begin{equation}
399   \label{eq:Edyn}
400    \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp
401 \end{equation}
402 The static power is related to the power leakage of the CPU and is consumed
403 during computation and even when idle. As
404 in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
405 the static power of a processor is considered as constant during idle and
406 computation periods, and for all its available frequencies.  The static energy
407 is the static power multiplied by the execution time of the program.  According
408 to the execution time model in (\ref{eq:perf}), the execution time of the
409 program is the sum of the computation and the communication times. The
410 computation time is linearly related to the frequency scaling factor, while this
411 scaling factor does not affect the communication time.  The static energy of a
412 processor after scaling its frequency is computed as follows:
413 \begin{equation}
414   \label{eq:Estatic}
415   \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
416 \end{equation}
417
418 In the considered heterogeneous platform, each processor $i$ may have
419 different dynamic and static powers, noted as $\Pd[i]$ and $\Ps[i]$
420 respectively.  Therefore, even if the distributed message passing iterative
421 application is load balanced, the computation time of each CPU $i$ noted
422 $\Tcp[i]$ may be different and different frequency scaling factors may be
423 computed in order to decrease the overall energy consumption of the application
424 and reduce slack times.  The communication time of a processor $i$ is noted as
425 $\Tcm[i]$ and could contain slack times when communicating with slower nodes,
426 see Figure~\ref{fig:heter}.  Therefore, all nodes do not have equal
427 communication times. While the dynamic energy is computed according to the
428 frequency scaling factor and the dynamic power of each node as in
429 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
430 of one iteration multiplied by the static power of each processor.  The overall
431 energy consumption of a message passing distributed application executed over a
432 heterogeneous platform during one iteration is the summation of all dynamic and
433 static energies for each processor.  It is computed as follows:
434 \begin{multline}
435   \label{eq:energy}
436  E = \sum_{i=1}^{N} {(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i])} + {} \\
437  \sum_{i=1}^{N} (\Ps[i] \cdot (\max_{i=1,2,\dots,N} (\Tcp[i] \cdot S_{i}) +
438   {\MinTcm))}
439 \end{multline}
440
441 Reducing the frequencies of the processors according to the vector of scaling
442 factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the application
443 and thus, increase the static energy because the execution time is
444 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
445 for the iterative application can be measured by measuring the energy
446 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
447 of iterations of that application.
448
449 \section{Optimization of both energy consumption and performance}
450 \label{sec.compet}
451
452 Using the lowest frequency for each processor does not necessarily give the most
453 energy efficient execution of an application. Indeed, even though the dynamic
454 power is reduced while scaling down the frequency of a processor, its
455 computation power is proportionally decreased. Hence, the execution time might
456 be drastically increased and during that time, dynamic and static powers are
457 being consumed.  Therefore, it might cancel any gains achieved by scaling down
458 the frequency of all nodes to the minimum and the overall energy consumption of
459 the application might not be the optimal one.  It is not trivial to select the
460 appropriate frequency scaling factor for each processor while considering the
461 characteristics of each processor (computation power, range of frequencies,
462 dynamic and static powers) and the task executed (computation/communication
463 ratio). The aim being to reduce the overall energy consumption and to avoid
464 increasing significantly the execution time.  In our previous
465 work~\cite{Our_first_paper}, we proposed a method that selects the optimal
466 frequency scaling factor for a homogeneous cluster executing a message passing
467 iterative synchronous application while giving the best trade-off between the
468 energy consumption and the performance for such applications.  In this work we
469 are interested in heterogeneous clusters as described above.  Due to the
470 heterogeneity of the processors, a vector of scaling factors should be selected
471 and it must give the best trade-off between energy consumption and performance.
472
473 The relation between the energy consumption and the execution time for an
474 application is complex and nonlinear, Thus, unlike the relation between the
475 execution time and the scaling factor, the relation between the energy and the
476 frequency scaling factors is nonlinear, for more details refer
477 to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  Moreover, these relations
478 are not measured using the same metric.  To solve this problem, the execution
479 time is normalized by computing the ratio between the new execution time (after
480 scaling down the frequencies of some processors) and the initial one (with
481 maximum frequency for all nodes) as follows:
482 \begin{multline}
483   \label{eq:pnorm}
484   \Pnorm = \frac{\Tnew}{\Told}\\
485        {} = \frac{ \max_{i=1,2,\dots,N} (\Tcp[i] \cdot S_{i}) +\MinTcm}
486            {\max_{i=1,2,\dots,N}{(\Tcp[i]+\Tcm[i])}}
487 \end{multline}
488
489 In the same way, the energy is normalized by computing the ratio between the
490 consumed energy while scaling down the frequency and the consumed energy with
491 maximum frequency for all nodes:
492 \begin{multline}
493   \label{eq:enorm}
494   \Enorm = \frac{\Ereduced}{\Eoriginal} \\
495   {} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i])} +
496  \sum_{i=1}^{N} {(\Ps[i] \cdot \Tnew)}}{\sum_{i=1}^{N}{( \Pd[i] \cdot  \Tcp[i])} +
497  \sum_{i=1}^{N} {(\Ps[i] \cdot \Told)}}
498 \end{multline}
499 Where $\Ereduced$ and $\Eoriginal$ are computed using (\ref{eq:energy}) and
500 $\Tnew$ and $\Told$ are computed as in (\ref{eq:pnorm}).
501
502 While the main goal is to optimize the energy and execution time at the same
503 time, the normalized energy and execution time curves are not in the same
504 direction. According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
505 vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
506 and the execution time simultaneously.  But the main objective is to produce
507 maximum energy reduction with minimum execution time reduction.
508
509 This problem can be solved by making the optimization process for energy and
510 execution time following the same direction.  Therefore, the equation of the
511 normalized execution time is inverted which gives the normalized performance
512 equation, as follows:
513 \begin{multline}
514   \label{eq:pnorm_inv}
515   \Pnorm = \frac{\Told}{\Tnew}\\
516           = \frac{\max_{i=1,2,\dots,N}{(\Tcp[i]+\Tcm[i])}}
517             { \max_{i=1,2,\dots,N} (\Tcp[i] \cdot S_{i}) + \MinTcm}
518 \end{multline}
519
520 \begin{figure}[!t]
521   \centering
522   \subfloat[Homogeneous platform]{%
523     \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
524
525   \subfloat[Heterogeneous platform]{%
526     \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
527   \label{fig:rel}
528   \caption{The energy and performance relation}
529 \end{figure}
530
531 Then, the objective function can be modeled in order to find the maximum
532 distance between the energy curve (\ref{eq:enorm}) and the performance curve
533 (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
534 represents the minimum energy consumption with minimum execution time (maximum
535 performance) at the same time, see Figure~\ref{fig:r1} or
536 Figure~\ref{fig:r2}. Then the objective function has the following form:
537 \begin{equation}
538   \label{eq:max}
539   \MaxDist =
540   \mathop{\max_{i=1,\dots F}}_{j=1,\dots,N}
541       (\overbrace{\Pnorm(S_{ij})}^{\text{Maximize}} -
542        \overbrace{\Enorm(S_{ij})}^{\text{Minimize}} )
543 \end{equation}
544 where $N$ is the number of nodes and $F$ is the number of available frequencies
545 for each node.  Then, the optimal set of scaling factors that satisfies
546 (\ref{eq:max}) can be selected.  The objective function can work with any energy
547 model or any power values for each node (static and dynamic powers). However,
548 the most important energy reduction gain can be achieved when the energy curve
549 has a convex form as shown
550 in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
551
552 \section{The scaling factors selection algorithm for heterogeneous platforms }
553 \label{sec.optim}
554
555 \begin{algorithm}
556   \begin{algorithmic}[1]
557     % \footnotesize
558     \Require ~
559     \begin{description}
560     \item[{$\Tcp[i]$}] array of all computation times for all nodes during one iteration and with highest frequency.
561     \item[{$\Tcm[i]$}] array of all communication times for all nodes during one iteration and with highest frequency.
562     \item[{$\Fmax[i]$}] array of the maximum frequencies for all nodes.
563     \item[{$\Pd[i]$}] array of the dynamic powers for all nodes.
564     \item[{$\Ps[i]$}] array of the static powers for all nodes.
565     \item[{$\Fdiff[i]$}] array of the difference between two successive frequencies for all nodes.
566     \end{description}
567     \Ensure $\Sopt[1],\Sopt[2] \dots, \Sopt[N]$ is a vector of optimal scaling factors
568
569     \State $\Scp[i] \gets \frac{\max_{i=1,2,\dots,N}(\Tcp[i])}{\Tcp[i]} $
570     \State $F_{i} \gets  \frac{\Fmax[i]}{\Scp[i]},~{i=1,2,\cdots,N}$
571     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
572     \If{(not the first frequency)}
573           \State $F_i \gets F_i+\Fdiff[i],~i=1,\dots,N.$
574     \EndIf
575     \State $\Told \gets \max_{i=1,\dots,N} (\Tcp[i]+\Tcm[i])$
576     % \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd[i] \cdot  \Tcp[i])} +\sum_{i=1}^{N} {(\Ps[i] \cdot \Told)}$
577     \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd[i] \cdot  \Tcp[i] + \Ps[i] \cdot \Told)}$
578     \State $\Sopt[i] \gets 1,~i=1,\dots,N. $
579     \State $\Dist \gets 0 $
580     \While {(all nodes not reach their  minimum  frequency)}
581         \If{(not the last freq. \textbf{and} not the slowest node)}
582         \State $F_i \gets F_i - \Fdiff[i],~i=1,\dots,N.$
583         \State $S_i \gets \frac{\Fmax[i]}{F_i},~i=1,\dots,N.$
584         \EndIf
585        \State $\Tnew \gets \max_{i=1,\dots,N} (\Tcp[i] \cdot S_{i}) + \MinTcm $
586 %       \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i])} + \sum_{i=1}^{N} {(\Ps[i] \cdot \rlap{\Tnew)}} $
587        \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i] + \Ps[i] \cdot \rlap{\Tnew)}} $
588        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
589        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
590       \If{$(\Pnorm - \Enorm > \Dist)$}
591         \State $\Sopt[i] \gets S_{i},~i=1,\dots,N. $
592         \State $\Dist \gets \Pnorm - \Enorm$
593       \EndIf
594     \EndWhile
595     \State  Return $\Sopt[1],\Sopt[2],\dots,\Sopt[N]$
596   \end{algorithmic}
597   \caption{frequency scaling factors selection algorithm}
598   \label{HSA}
599 \end{algorithm}
600
601 \begin{algorithm}
602   \begin{algorithmic}[1]
603     % \footnotesize
604     \For {$k=1$ to \textit{some iterations}}
605       \State Computations section.
606       \State Communications section.
607       \If {$(k=1)$}
608         \State Gather all times of computation and\newline\hspace*{3em}%
609                communication from each node.
610         \State Call Algorithm \ref{HSA}.
611         \State Compute the new frequencies from the\newline\hspace*{3em}%
612                returned optimal scaling factors.
613         \State Set the new frequencies to nodes.
614       \EndIf
615     \EndFor
616   \end{algorithmic}
617   \caption{DVFS algorithm}
618   \label{dvfs}
619 \end{algorithm}
620
621 \subsection{The algorithm details}
622
623 In this section, Algorithm~\ref{HSA} is presented. It selects the frequency
624 scaling factors vector that gives the best trade-off between minimizing the
625 energy consumption and maximizing the performance of a message passing
626 synchronous iterative application executed on a heterogeneous platform. It works
627 online during the execution time of the iterative message passing program.  It
628 uses information gathered during the first iteration such as the computation
629 time and the communication time in one iteration for each node. The algorithm is
630 executed after the first iteration and returns a vector of optimal frequency
631 scaling factors that satisfies the objective function (\ref{eq:max}). The
632 program applies DVFS operations to change the frequencies of the CPUs according
633 to the computed scaling factors.  This algorithm is called just once during the
634 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
635 scaling algorithm is called in the iterative MPI program.
636
637 \begin{figure}[!t]
638   \centering
639   \includegraphics[scale=0.5]{fig/start_freq}
640   \caption{Selecting the initial frequencies}
641   \label{fig:st_freq}
642 \end{figure}
643
644 The nodes in a heterogeneous platform have different computing powers, thus
645 while executing message passing iterative synchronous applications, fast nodes
646 have to wait for the slower ones to finish their computations before being able
647 to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
648 periods are called idle or slack times.  The algorithm takes into account this
649 problem and tries to reduce these slack times when selecting the frequency
650 scaling factors vector. At first, it selects initial frequency scaling factors
651 that increase the execution times of fast nodes and minimize the differences
652 between the computation times of fast and slow nodes. The value of the initial
653 frequency scaling factor for each node is inversely proportional to its
654 computation time that was gathered from the first iteration. These initial
655 frequency scaling factors are computed as a ratio between the computation time
656 of the slowest node and the computation time of the node $i$ as follows:
657 \begin{equation}
658   \label{eq:Scp}
659   \Scp[i] = \frac{\max_{i=1,2,\dots,N}(\Tcp[i])}{\Tcp[i]}
660 \end{equation}
661 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
662 algorithm computes the initial frequencies for all nodes as a ratio between the
663 maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
664 follows:
665 \begin{equation}
666   \label{eq:Fint}
667   F_{i} = \frac{\Fmax[i]}{\Scp[i]},~{i=1,2,\dots,N}
668 \end{equation}
669 If the computed initial frequency for a node is not available in the gears of
670 that node, it is replaced by the nearest available frequency.  In
671 Figure~\ref{fig:st_freq}, the nodes are sorted by their computing power in
672 ascending order and the frequencies of the faster nodes are scaled down
673 according to the computed initial frequency scaling factors.  The resulting new
674 frequencies are highlighted in Figure~\ref{fig:st_freq}.  This set of
675 frequencies can be considered as a higher bound for the search space of the
676 optimal vector of frequencies because selecting frequency scaling factors higher
677 than the higher bound will not improve the performance of the application and it
678 will increase its overall energy consumption.  Therefore the algorithm that
679 selects the frequency scaling factors starts the search method from these
680 initial frequencies and takes a downward search direction toward lower
681 frequencies. The algorithm iterates on all left frequencies, from the higher
682 bound until all nodes reach their minimum frequencies, to compute their overall
683 energy consumption and performance, and select the optimal frequency scaling
684 factors vector. At each iteration the algorithm determines the slowest node
685 according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
686 while it lowers the frequency of all other nodes by one gear.  The new overall
687 energy consumption and execution time are computed according to the new scaling
688 factors.  The optimal set of frequency scaling factors is the set that gives the
689 highest distance according to the objective function (\ref{eq:max}).
690
691 Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
692 consumed energy for an application running on a homogeneous platform and a
693 heterogeneous platform respectively while increasing the scaling factors. It can
694 be noticed that in a homogeneous platform the search for the optimal scaling
695 factor should start from the maximum frequency because the performance and the
696 consumed energy decrease from the beginning of the plot. On the other hand, in
697 the heterogeneous platform the performance is maintained at the beginning of the
698 plot even if the frequencies of the faster nodes decrease until the computing
699 power of scaled down nodes are lower than the slowest node. In other words,
700 until they reach the higher bound. It can also be noticed that the higher the
701 difference between the faster nodes and the slower nodes is, the bigger the
702 maximum distance between the energy curve and the performance curve is while the
703 scaling factors are varying which results in bigger energy savings.
704
705 \subsection{The evaluation of the proposed algorithm}
706 \label{sec.verif.algo}
707
708 The precision of the proposed algorithm mainly depends on the execution time
709 prediction model defined in (\ref{eq:perf}) and the energy model computed by
710 (\ref{eq:energy}).  The energy model is also significantly dependent on the
711 execution time model because the static energy is linearly related to the
712 execution time and the dynamic energy is related to the computation time. So,
713 all the works presented in this paper are based on the execution time model. To
714 verify this model, the predicted execution time was compared to the real
715 execution time over SimGrid/SMPI simulator,
716 v3.10~\cite{casanova+giersch+legrand+al.2014.versatile}, for all the NAS
717 parallel benchmarks NPB v3.3 \cite{NAS.Parallel.Benchmarks}, running class B on
718 8 or 9 nodes. The comparison showed that the proposed execution time model is
719 very precise, the maximum normalized difference between the predicted execution
720 time and the real execution time is equal to 0.03 for all the NAS benchmarks.
721
722 Since the proposed algorithm is not an exact method it does not test all the
723 possible solutions (vectors of scaling factors) in the search space. To prove
724 its efficiency, it was compared on small instances to a brute force search
725 algorithm that tests all the possible solutions. The brute force algorithm was
726 applied to different NAS benchmarks classes with different number of nodes. The
727 solutions returned by the brute force algorithm and the proposed algorithm were
728 identical and the proposed algorithm was on average 10 times faster than the
729 brute force algorithm. It has a small execution time: for a heterogeneous
730 cluster composed of four different types of nodes having the characteristics
731 presented in Table~\ref{table:platform}, it takes on average \np[ms]{0.04} for 4
732 nodes and \np[ms]{0.15} on average for 144 nodes to compute the best scaling
733 factors vector.  The algorithm complexity is $O(F\cdot N)$, where $F$ is the
734 number of iterations and $N$ is the number of computing nodes. The algorithm
735 needs from 12 to 20 iterations to select the best vector of frequency scaling
736 factors that gives the results of the next sections.
737
738 \begin{table}[!t]
739   \caption{Heterogeneous nodes characteristics}
740   % title of Table
741   \centering
742   \begin{tabular}{|*{7}{r|}}
743     \hline
744     Node   & Simulated & Max   & Min   & Diff. & Dynamic    & Static    \\
745     type   & GFLOPS    & Freq. & Freq. & Freq. & power      & power     \\
746            &           & GHz   & GHz   & GHz   &            &           \\
747     \hline
748     1      & 40        & 2.50  & 1.20  & 0.100 & \np[W]{20} & \np[W]{4} \\
749     \hline
750     2      & 50        & 2.66  & 1.60  & 0.133 & \np[W]{25} & \np[W]{5} \\
751     \hline
752     3      & 60        & 2.90  & 1.20  & 0.100 & \np[W]{30} & \np[W]{6} \\
753     \hline
754     4      & 70        & 3.40  & 1.60  & 0.133 & \np[W]{35} & \np[W]{7} \\
755     \hline
756   \end{tabular}
757   \label{table:platform}
758 \end{table}
759
760 \section{Experimental results}
761 \label{sec.expe}
762
763 To evaluate the efficiency and the overall energy consumption reduction of
764 Algorithm~\ref{HSA}, it was applied to the NAS parallel benchmarks NPB v3.3. The
765 experiments were executed on the simulator SimGrid/SMPI which offers easy tools
766 to create a heterogeneous platform and run message passing applications over it.
767 The heterogeneous platform that was used in the experiments, had one core per
768 node because just one process was executed per node.  The heterogeneous platform
769 was composed of four types of nodes. Each type of nodes had different
770 characteristics such as the maximum CPU frequency, the number of available
771 frequencies and the computational power, see Table~\ref{table:platform}. The
772 characteristics of these different types of nodes are inspired from the
773 specifications of real Intel processors.  The heterogeneous platform had up to
774 144 nodes and had nodes from the four types in equal proportions, for example if
775 a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the
776 constructors of CPUs do not specify the dynamic and the static power of their
777 CPUs, for each type of node they were chosen proportionally to its computing
778 power (FLOPS).  In the initial heterogeneous platform, while computing with
779 highest frequency, each node consumed an amount of power proportional to its
780 computing power (which corresponds to \np[\%]{80} of its dynamic power and the
781 remaining \np[\%]{20} to the static power), the same assumption was made in
782 \cite{Our_first_paper,Rauber_Analytical.Modeling.for.Energy}.  Finally, These
783 nodes were connected via an Ethernet network with \np[Gbit/s]{1} bandwidth.
784
785
786 \subsection{The experimental results of the scaling algorithm}
787 \label{sec.res}
788
789 The proposed algorithm was applied to the seven parallel NAS benchmarks (EP, CG,
790 MG, FT, BT, LU and SP) and the benchmarks were executed with the three classes:
791 A, B and C. However, due to the lack of space in this paper, only the results of
792 the biggest class, C, are presented while being run on different number of
793 nodes, ranging from 4 to 128 or 144 nodes depending on the benchmark being
794 executed. Indeed, the benchmarks CG, MG, LU, EP and FT had to be executed on 1,
795 2, 4, 8, 16, 32, 64, or 128 nodes.  The other benchmarks such as BT and SP had
796 to be executed on 1, 4, 9, 16, 36, 64, or 144 nodes.
797
798 \begin{table}[!t]
799   \caption{Running NAS benchmarks on 4 nodes }
800   % title of Table
801   \centering
802   \begin{tabular}{|*{7}{r|}}
803     \hline
804     \hspace{-2.2084pt}%
805     Program & Execution & Energy        & Energy   & Performance   & Distance \\
806     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
807     \hline
808     CG      &  64.64    &  3560.39      & 34.16    & 6.72          & 27.44    \\
809     \hline
810     MG      &  18.89    &  1074.87      & 35.37    & 4.34          & 31.03    \\
811     \hline
812     EP      &  79.73    &  5521.04      & 26.83    & 3.04          & 23.79    \\
813     \hline
814     LU      & 308.65    & 21126.00      & 34.00    & 6.16          & 27.84    \\
815     \hline
816     BT      & 360.12    & 21505.55      & 35.36    & 8.49          & 26.87    \\
817     \hline
818     SP      & 234.24    & 13572.16      & 35.22    & 5.70          & 29.52    \\
819     \hline
820     FT      &  81.58    &  4151.48      & 35.58    & 0.99          & 34.59    \\
821     \hline
822   \end{tabular}
823   \label{table:res_4n}
824 % \end{table}
825
826   \medskip
827 % \begin{table}[!t]
828   \caption{Running NAS benchmarks on 8 and 9 nodes }
829   % title of Table
830   \centering
831   \begin{tabular}{|*{7}{r|}}
832     \hline
833     \hspace{-2.2084pt}%
834     Program & Execution & Energy        & Energy   & Performance   & Distance \\
835     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
836     \hline
837     CG      &  36.11    &  3263.49      & 31.25    & 7.12          & 24.13    \\
838     \hline
839     MG      &   8.99    &   953.39      & 33.78    & 6.41          & 27.37    \\
840     \hline
841     EP      &  40.39    &  5652.81      & 27.04    & 0.49          & 26.55    \\
842     \hline
843     LU      & 218.79    & 36149.77      & 28.23    & 0.01          & 28.22    \\
844     \hline
845     BT      & 166.89    & 23207.42      & 32.32    & 7.89          & 24.43    \\
846     \hline
847     SP      & 104.73    & 18414.62      & 24.73    & 2.78          & 21.95    \\
848     \hline
849     FT      &  51.10    &  4913.26      & 31.02    & 2.54          & 28.48    \\
850     \hline
851   \end{tabular}
852   \label{table:res_8n}
853 % \end{table}
854
855   \medskip
856 % \begin{table}[!t]
857   \caption{Running NAS benchmarks on 16 nodes }
858   % title of Table
859   \centering
860   \begin{tabular}{|*{7}{r|}}
861     \hline
862     \hspace{-2.2084pt}%
863     Program & Execution & Energy        & Energy   & Performance   & Distance \\
864     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
865     \hline
866     CG      &  31.74    &  4373.90      & 26.29    & 9.57          & 16.72    \\
867     \hline
868     MG      &   5.71    &  1076.19      & 32.49    & 6.05          & 26.44    \\
869     \hline
870     EP      &  20.11    &  5638.49      & 26.85    & 0.56          & 26.29    \\
871     \hline
872     LU      & 144.13    & 42529.06      & 28.80    & 6.56          & 22.24    \\
873     \hline
874     BT      &  97.29    & 22813.86      & 34.95    & 5.80          & 29.15    \\
875     \hline
876     SP      &  66.49    & 20821.67      & 22.49    & 3.82          & 18.67    \\
877     \hline
878     FT      &  37.01    &  5505.60      & 31.59    & 6.48          & 25.11    \\
879     \hline
880   \end{tabular}
881   \label{table:res_16n}
882 % \end{table}
883
884   \medskip
885 % \begin{table}[!t]
886   \caption{Running NAS benchmarks on 32 and 36 nodes }
887   % title of Table
888   \centering
889   \begin{tabular}{|*{7}{r|}}
890     \hline
891     \hspace{-2.2084pt}%
892     Program & Execution & Energy        & Energy   & Performance   & Distance \\
893     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
894     \hline
895     CG      & 32.35     &  6704.21      & 16.15    & 5.30          & 10.85    \\
896     \hline
897     MG      &  4.30     &  1355.58      & 28.93    & 8.85          & 20.08    \\
898     \hline
899     EP      &  9.96     &  5519.68      & 26.98    & 0.02          & 26.96    \\
900     \hline
901     LU      & 99.93     & 67463.43      & 23.60    & 2.45          & 21.15    \\
902     \hline
903     BT      & 48.61     & 23796.97      & 34.62    & 5.83          & 28.79    \\
904     \hline
905     SP      & 46.01     & 27007.43      & 22.72    & 3.45          & 19.27    \\
906     \hline
907     FT      & 28.06     &  7142.69      & 23.09    & 2.90          & 20.19    \\
908     \hline
909   \end{tabular}
910   \label{table:res_32n}
911 % \end{table}
912
913   \medskip
914 % \begin{table}[!t]
915   \caption{Running NAS benchmarks on 64 nodes }
916   % title of Table
917   \centering
918   \begin{tabular}{|*{7}{r|}}
919     \hline
920     \hspace{-2.2084pt}%
921     Program & Execution & Energy        & Energy   & Performance   & Distance \\
922     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
923     \hline
924     CG      & 46.65     &  17521.83     &  8.13    &  1.68         &  6.45    \\
925     \hline
926     MG      &  3.27     &   1534.70     & 29.27    & 14.35         & 14.92    \\
927     \hline
928     EP      &  5.05     &   5471.11     & 27.12    &  3.11         & 24.01    \\
929     \hline
930     LU      & 73.92     & 101339.16     & 21.96    &  3.67         & 18.29    \\
931     \hline
932     BT      & 39.99     &  27166.71     & 32.02    & 12.28         & 19.74    \\
933     \hline
934     SP      & 52.00     &  49099.28     & 24.84    &  0.03         & 24.81    \\
935     \hline
936     FT      & 25.97     &  10416.82     & 20.15    &  4.87         & 15.28    \\
937     \hline
938   \end{tabular}
939   \label{table:res_64n}
940 % \end{table}
941
942   \medskip
943 % \begin{table}[!t]
944   \caption{Running NAS benchmarks on 128 and 144 nodes }
945   % title of Table
946   \centering
947   \begin{tabular}{|*{7}{r|}}
948     \hline
949     \hspace{-2.2084pt}%
950     Program & Execution & Energy        & Energy   & Performance   & Distance \\
951     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
952     \hline
953     CG      & 56.92     &  41163.36     &  4.00    &  1.10         &  2.90    \\
954     \hline
955     MG      &  3.55     &   2843.33     & 18.77    & 10.38         &  8.39    \\
956     \hline
957     EP      &  2.67     &   5669.66     & 27.09    &  0.03         & 27.06    \\
958     \hline
959     LU      & 51.23     & 144471.90     & 16.67    &  2.36         & 14.31    \\
960     \hline
961     BT      & 37.96     &  44243.82     & 23.18    &  1.28         & 21.90    \\
962     \hline
963     SP      & 64.53     & 115409.71     & 26.72    &  0.05         & 26.67    \\
964     \hline
965     FT      & 25.51     &  18808.72     & 12.85    &  2.84         & 10.01    \\
966     \hline
967   \end{tabular}
968   \label{table:res_128n}
969 \end{table}
970
971 \begin{figure}[!t]
972   \centering
973   \subfloat[Energy saving (\%)]{%
974     \includegraphics[width=.33\textwidth]{fig/energy}\label{fig:energy}}%
975
976   \subfloat[Performance degradation (\%)]{%
977     \includegraphics[width=.33\textwidth]{fig/per_deg}\label{fig:per_deg}}
978   \label{fig:avg}
979   \caption{The energy and performance for all NAS benchmarks running with a different number of nodes}
980 \end{figure}
981
982 The overall energy consumption was computed for each instance according to the
983 energy consumption model (\ref{eq:energy}), with and without applying the
984 algorithm. The execution time was also measured for all these experiments. Then,
985 the energy saving and performance degradation percentages were computed for each
986 instance.  The results are presented in Tables~\ref{table:res_4n},
987 \ref{table:res_8n}, \ref{table:res_16n}, \ref{table:res_32n},
988 \ref{table:res_64n} and \ref{table:res_128n}. All these results are the average
989 values from many experiments for energy savings and performance degradation.
990 The tables show the experimental results for running the NAS parallel benchmarks
991 on different number of nodes.  The experiments show that the algorithm
992 significantly reduces the energy consumption (up to \np[\%]{35}) and tries to
993 limit the performance degradation.  They also show that the energy saving
994 percentage decreases when the number of computing nodes increases.  This
995 reduction is due to the increase of the communication times compared to the
996 execution times when the benchmarks are run over a higher number of nodes.
997 Indeed, the benchmarks with the same class, C, are executed on different numbers
998 of nodes, so the computation required for each iteration is divided by the
999 number of computing nodes.  On the other hand, more communications are required
1000 when increasing the number of nodes so the static energy increases linearly
1001 according to the communication time and the dynamic power is less relevant in
1002 the overall energy consumption.  Therefore, reducing the frequency with
1003 Algorithm~\ref{HSA} is less effective in reducing the overall energy savings. It
1004 can also be noticed that for the benchmarks EP and SP that contain little or no
1005 communications, the energy savings are not significantly affected by the high
1006 number of nodes.  No experiments were conducted using bigger classes than D,
1007 because they require a lot of memory (more than \np[GB]{64}) when being executed
1008 by the simulator on one machine.  The maximum distance between the normalized
1009 energy curve and the normalized performance for each instance is also shown in
1010 the result tables. It decrease in the same way as the energy saving percentage.
1011 The tables also show that the performance degradation percentage is not
1012 significantly increased when the number of computing nodes is increased because
1013 the computation times are small when compared to the communication times.
1014
1015 Figures~\ref{fig:energy} and \ref{fig:per_deg} present the energy saving and
1016 performance degradation respectively for all the benchmarks according to the
1017 number of used nodes. As shown in the first plot, the energy saving percentages
1018 of the benchmarks MG, LU, BT and FT decrease linearly when the number of nodes
1019 increase. While for the EP and SP benchmarks, the energy saving percentage is
1020 not affected by the increase of the number of computing nodes, because in these
1021 benchmarks there are little or no communications. Finally, the energy saving of
1022 the GC benchmark significantly decrease when the number of nodes increase
1023 because this benchmark has more communications than the others. The second plot
1024 shows that the performance degradation percentages of most of the benchmarks
1025 decrease when they run on a big number of nodes because they spend more time
1026 communicating than computing, thus, scaling down the frequencies of some nodes
1027 has less effect on the performance.
1028
1029 \subsection{The results for different power consumption scenarios}
1030 \label{sec.compare}
1031
1032 The results of the previous section were obtained while using processors that
1033 consume during computation an overall power which is \np[\%]{80} composed of
1034 dynamic power and of \np[\%]{20} of static power. In this section, these ratios
1035 are changed and two new power scenarios are considered in order to evaluate how
1036 the proposed algorithm adapts itself according to the static and dynamic power
1037 values.  The two new power scenarios are the following:
1038
1039 \begin{itemize}
1040 \item \np[\%]{70} of dynamic power and \np[\%]{30} of static power
1041 \item \np[\%]{90} of dynamic power and \np[\%]{10} of static power
1042 \end{itemize}
1043
1044 The NAS parallel benchmarks were executed again over processors that follow the
1045 new power scenarios.  The class C of each benchmark was run over 8 or 9 nodes
1046 and the results are presented in Tables~\ref{table:res_s1} and
1047 \ref{table:res_s2}. These tables show that the energy saving percentage of the
1048 \np[\%]{70}-\np[\%]{30} scenario is smaller for all benchmarks compared to the
1049 energy saving of the \np[\%]{90}-\np[\%]{10} scenario.  Indeed, in the latter
1050 more dynamic power is consumed when nodes are running on their maximum
1051 frequencies, thus, scaling down the frequency of the nodes results in higher
1052 energy savings than in the \np[\%]{70}-\np[\%]{30} scenario. On the other hand,
1053 the performance degradation percentage is smaller in the \np[\%]{70}-\np[\%]{30}
1054 scenario compared to the \np[\%]{90}-\np[\%]{10} scenario. This is due to the
1055 higher static power percentage in the first scenario which makes it more
1056 relevant in the overall consumed energy.  Indeed, the static energy is related
1057 to the execution time and if the performance is degraded the amount of consumed
1058 static energy directly increases.  Therefore, the proposed algorithm does not
1059 really significantly scale down much the frequencies of the nodes in order to
1060 limit the increase of the execution time and thus limiting the effect of the
1061 consumed static energy.
1062
1063 Both new power scenarios are compared to the old one in
1064 Figure~\ref{fig:sen_comp}. It shows the average of the performance degradation,
1065 the energy saving and the distances for all NAS benchmarks of class C running on
1066 8 or 9 nodes.  The comparison shows that the energy saving ratio is proportional
1067 to the dynamic power ratio: it is increased when applying the
1068 \np[\%]{90}-\np[\%]{10} scenario because at maximum frequency the dynamic energy
1069 is the most relevant in the overall consumed energy and can be reduced by
1070 lowering the frequency of some processors. On the other hand, the energy saving
1071 decreases when the \np[\%]{70}-\np[\%]{30} scenario is used because the dynamic
1072 energy is less relevant in the overall consumed energy and lowering the
1073 frequency does not return big energy savings.  Moreover, the average of the
1074 performance degradation is decreased when using a higher ratio for static power
1075 (e.g.  \np[\%]{70}-\np[\%]{30} scenario and \np[\%]{80}-\np[\%]{20}
1076 scenario). Since the proposed algorithm optimizes the energy consumption when
1077 using a higher ratio for dynamic power the algorithm selects bigger frequency
1078 scaling factors that result in more energy saving but less performance, for
1079 example see Figure~\ref{fig:scales_comp}. The opposite happens when using a
1080 higher ratio for static power, the algorithm proportionally selects smaller
1081 scaling values which result in less energy saving but also less performance
1082 degradation.
1083
1084 \begin{table}[!t]
1085   \caption{The results of the \np[\%]{70}-\np[\%]{30} power scenario}
1086   % title of Table
1087   \centering
1088   \begin{tabular}{|*{6}{r|}}
1089     \hline
1090     Program & Energy        & Energy   & Performance   & Distance \\
1091     name    & consumption/J & saving\% & degradation\% &          \\
1092     \hline
1093     CG      &  4144.21      & 22.42    & 7.72          & 14.70    \\
1094     \hline
1095     MG      &  1133.23      & 24.50    & 5.34          & 19.16    \\
1096    \hline
1097     EP      &  6170.30      & 16.19    & 0.02          & 16.17    \\
1098    \hline
1099     LU      & 39477.28      & 20.43    & 0.07          & 20.36    \\
1100     \hline
1101     BT      & 26169.55      & 25.34    & 6.62          & 18.71    \\
1102    \hline
1103     SP      & 19620.09      & 19.32    & 3.66          & 15.66    \\
1104    \hline
1105     FT      &  6094.07      & 23.17    & 0.36          & 22.81    \\
1106     \hline
1107   \end{tabular}
1108   \label{table:res_s1}
1109 \end{table}
1110
1111 \begin{table}[!t]
1112   \caption{The results of the \np[\%]{90}-\np[\%]{10} power scenario}
1113   % title of Table
1114   \centering
1115   \begin{tabular}{|*{6}{r|}}
1116     \hline
1117     Program & Energy          & Energy      & Performance   & Distance \\
1118     name    & consumption/J   & saving\%    & degradation\% &          \\
1119     \hline
1120     CG      &  2812.38        & 36.36       &  6.80         & 29.56    \\
1121     \hline
1122     MG      &   825.43        & 38.35       &  6.41         & 31.94    \\
1123     \hline
1124     EP      &  5281.62        & 35.02       &  2.68         & 32.34    \\
1125     \hline
1126     LU      & 31611.28        & 39.15       &  3.51         & 35.64    \\
1127     \hline
1128     BT      & 21296.46        & 36.70       &  6.60         & 30.10    \\
1129     \hline
1130     SP      & 15183.42        & 35.19       & 11.76         & 23.43    \\
1131     \hline
1132     FT      &  3856.54        & 40.80       &  5.67         & 35.13    \\
1133     \hline
1134   \end{tabular}
1135   \label{table:res_s2}
1136 \end{table}
1137
1138 \begin{table}[!t]
1139   \caption{Comparing the proposed algorithm}
1140   \centering
1141   \begin{tabular}{|*{7}{r|}}
1142     \hline
1143     Program & \multicolumn{2}{c|}{Energy saving \%}
1144             & \multicolumn{2}{c|}{Perf.  degradation \%}
1145             & \multicolumn{2}{c|}{Distance} \\
1146     \cline{2-7}
1147     name    & EDP   & MaxDist & EDP  & MaxDist & EDP   & MaxDist \\
1148     \hline
1149     CG      & 27.58 & 31.25   & 5.82 & 7.12    & 21.76 & 24.13   \\
1150     \hline
1151     MG      & 29.49 & 33.78   & 3.74 & 6.41    & 25.75 & 27.37   \\
1152     \hline
1153     LU      & 19.55 & 28.33   & 0.00 & 0.01    & 19.55 & 28.22   \\
1154     \hline
1155     EP      & 28.40 & 27.04   & 4.29 & 0.49    & 24.11 & 26.55   \\
1156     \hline
1157     BT      & 27.68 & 32.32   & 6.45 & 7.87    & 21.23 & 24.43   \\
1158     \hline
1159     SP      & 20.52 & 24.73   & 5.21 & 2.78    & 15.31 & 21.95   \\
1160     \hline
1161     FT      & 27.03 & 31.02   & 2.75 & 2.54    & 24.28 & 28.48   \\
1162     \hline
1163   \end{tabular}
1164   \label{table:compare_EDP}
1165 \end{table}
1166
1167 \begin{figure}[!t]
1168   \centering
1169   \subfloat[Comparison  between the results on 8 nodes]{%
1170     \includegraphics[width=.33\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
1171
1172   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
1173     \includegraphics[width=.33\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
1174   \label{fig:comp}
1175   \caption{The comparison of the three power scenarios}
1176 \end{figure}
1177
1178 \begin{figure}[!t]
1179   \centering
1180    \includegraphics[scale=0.5]{fig/compare_EDP.pdf}
1181   \caption{Trade-off comparison for NAS benchmarks class C}
1182   \label{fig:compare_EDP}
1183 \end{figure}
1184
1185
1186 \subsection{The comparison of the proposed scaling algorithm }
1187 \label{sec.compare_EDP}
1188
1189 In this section, the scaling factors selection algorithm, called MaxDist, is
1190 compared to Spiliopoulos et al. algorithm
1191 \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, called EDP.  They developed a
1192 green governor that regularly applies an online frequency selecting algorithm to
1193 reduce the energy consumed by a multicore architecture without degrading much
1194 its performance. The algorithm selects the frequencies that minimize the energy
1195 and delay products, $\mathit{EDP}=\mathit{energy}\times \mathit{delay}$ using
1196 the predicted overall energy consumption and execution time delay for each
1197 frequency.  To fairly compare both algorithms, the same energy and execution
1198 time models, equations (\ref{eq:energy}) and (\ref{eq:fnew}), were used for both
1199 algorithms to predict the energy consumption and the execution times. Also
1200 Spiliopoulos et al. algorithm was adapted to start the search from the initial
1201 frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm
1202 is an exhaustive search algorithm that minimizes the EDP and has the initial
1203 frequencies values as an upper bound.
1204
1205 Both algorithms were applied to the parallel NAS benchmarks to compare their
1206 efficiency. Table~\ref{table:compare_EDP} presents the results of comparing the
1207 execution times and the energy consumption for both versions of the NAS
1208 benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous
1209 nodes. The results show that our algorithm provides better energy savings than
1210 Spiliopoulos et al. algorithm, on average it results in \np[\%]{29.76} energy
1211 saving while their algorithm returns just \np[\%]{25.75}. The average of
1212 performance degradation percentage is approximately the same for both
1213 algorithms, about \np[\%]{4}.
1214
1215 For all benchmarks,  our algorithm outperforms Spiliopoulos et  al. algorithm in
1216 terms of  energy and  performance trade-off, see  Figure~\ref{fig:compare_EDP},
1217 because it maximizes the distance  between the energy saving and the performance
1218 degradation values while giving the same weight for both metrics.
1219
1220 \section{Conclusion}
1221 \label{sec.concl}
1222
1223 In this paper, a new online frequency selecting algorithm has been presented. It
1224 selects the best possible vector of frequency scaling factors that gives the
1225 maximum distance (optimal trade-off) between the predicted energy and the
1226 predicted performance curves for a heterogeneous platform. This algorithm uses a
1227 new energy model for measuring and predicting the energy of distributed
1228 iterative applications running over heterogeneous platforms. To evaluate the
1229 proposed method, it was applied on the NAS parallel benchmarks and executed over
1230 a heterogeneous platform simulated by SimGrid. The results of the experiments
1231 showed that the algorithm reduces up to \np[\%]{35} the energy consumption of a
1232 message passing iterative method while limiting the degradation of the
1233 performance. The algorithm also selects different scaling factors according to
1234 the percentage of the computing and communication times, and according to the
1235 values of the static and dynamic powers of the CPUs.  Finally, the algorithm was
1236 compared to Spiliopoulos et al.  algorithm and the results showed that it
1237 outperforms their algorithm in terms of energy-time trade-off.
1238
1239 In the near future, this method  will be applied to real heterogeneous platforms
1240 to evaluate its  performance in a real study case. It  would also be interesting
1241 to evaluate its scalability over large scale heterogeneous platforms and measure
1242 the energy  consumption reduction it can  produce.  Afterward, we  would like to
1243 develop a similar method that  is adapted to asynchronous iterative applications
1244 where  each task  does not  wait for  other tasks  to finish  their  works.  The
1245 development of such a method might require a new energy model because the number
1246 of iterations is  not known in advance and depends on  the global convergence of
1247 the iterative system.
1248
1249 \section*{Acknowledgment}
1250
1251 This work has been partially supported by the Labex
1252 ACTION project (contract ``ANR-11-LABX-01-01''). As a PhD student,
1253 Mr. Ahmed Fanfakh, would like to thank the University of
1254 Babylon (Iraq) for supporting his work.
1255
1256
1257 % trigger a \newpage just before the given reference
1258 % number - used to balance the columns on the last page
1259 % adjust value as needed - may need to be readjusted if
1260 % the document is modified later
1261 %\IEEEtriggeratref{15}
1262
1263 \bibliographystyle{IEEEtran}
1264 \bibliography{IEEEabrv,my_reference}
1265 \end{document}
1266
1267 %%% Local Variables:
1268 %%% mode: latex
1269 %%% TeX-master: t
1270 %%% fill-column: 80
1271 %%% ispell-local-dictionary: "american"
1272 %%% End:
1273
1274 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
1275 % LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
1276 % LocalWords:  de badri muslim MPI SimGrid GFlops Xeon EP BT GPUs CPUs AMD
1277 %  LocalWords:  Spiliopoulos scalability