]> AND Private Git Repository - mpi-energy2.git/blob - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
merged
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{algorithm}
9 \usepackage{subfig}
10 \usepackage{amsmath}
11 \usepackage{url}
12 \usepackage{multirow}
13 \DeclareUrlCommand\email{\urlstyle{same}}
14
15 \usepackage[autolanguage,np]{numprint}
16 \AtBeginDocument{%
17   \renewcommand*\npunitcommand[1]{\text{#1}}
18   \npthousandthpartsep{}}
19
20 \usepackage{xspace}
21 \usepackage[textsize=footnotesize]{todonotes}
22 \newcommand{\AG}[2][inline]{%
23   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
24 \newcommand{\JC}[2][inline]{%
25   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
26
27 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
28
29 %% used to put some subscripts lower, and make them more legible
30 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
31
32 \newcommand{\CL}{\Xsub{C}{L}}
33 \newcommand{\Dist}{\mathit{Dist}}
34 \newcommand{\EdNew}{\Xsub{E}{dNew}}
35 \newcommand{\Eind}{\Xsub{E}{ind}}
36 \newcommand{\Enorm}{\Xsub{E}{Norm}}
37 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
38 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
39 \newcommand{\Es}{\Xsub{E}{S}}
40 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
41 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
42 \newcommand{\Fnew}{\Xsub{F}{new}}
43 \newcommand{\Ileak}{\Xsub{I}{leak}}
44 \newcommand{\Kdesign}{\Xsub{K}{design}}
45 \newcommand{\MaxDist}{\mathit{Max}\Dist}
46 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
47 \newcommand{\Ntrans}{\Xsub{N}{trans}}
48 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
49 \newcommand{\PdNew}{\Xsub{P}{dNew}}
50 \newcommand{\PdOld}{\Xsub{P}{dOld}}
51 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
52 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
53 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
54 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
55 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
56 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
57 \newcommand{\Ppeak}[1][]{\Xsub{P}{peak}_{#1}}
58 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
59 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
60 \newcommand{\Tnew}{\Xsub{T}{New}}
61 \newcommand{\Told}{\Xsub{T}{Old}}
62
63 \begin{document}
64
65 \title{Energy Consumption Reduction with DVFS for \\
66   Message Passing Iterative Applications on \\
67   Heterogeneous Architectures}
68
69 \author{%
70   \IEEEauthorblockN{%
71     Jean-Claude Charr,
72     Raphaël Couturier,
73     Ahmed Fanfakh and
74     Arnaud Giersch
75   }
76   \IEEEauthorblockA{%
77     FEMTO-ST Institute, University of Franche-Comté\\
78     IUT de Belfort-Montbéliard,
79     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
80     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
81     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
82     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
83    }
84   }
85
86 \maketitle
87
88 \begin{abstract}
89   
90
91 \end{abstract}
92
93 \section{Introduction}
94 \label{sec.intro}
95
96
97
98 \section{Related works}
99 \label{sec.relwork}
100
101
102 \section{The performance and energy consumption measurements on heterogeneous architecture}
103 \label{sec.exe}
104
105 \subsection{The execution time of message passing distributed iterative
106   applications on a heterogeneous platform}
107
108 In this paper, we are interested in reducing the energy consumption of message
109 passing distributed iterative synchronous applications running over
110 heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
111 heterogeneous computing clusters interconnected via a long distance network which has lower bandwidth 
112 and higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via high speed network. Therefore, each cluster has different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
113
114 \begin{figure}[!t]
115   \centering
116   \includegraphics[scale=0.6]{fig/commtasks}
117   \caption{Parallel tasks on a heterogeneous platform}
118   \label{fig:heter}
119 \end{figure}
120
121 The overall execution time of a distributed iterative synchronous application 
122 over a heterogeneous grid consists of the sum of the computation time and 
123 the communication time for every iteration on a node. However, due to the
124 heterogeneous computation power of the computing clusters, slack times may occur
125 when fast nodes have to wait, during synchronous communications, for the slower
126 nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
127 overall execution time of the program is the execution time of the slowest task 
128 which has the highest computation time and no slack time.
129
130 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
131 modern processors, that reduces the energy consumption of a CPU by scaling
132 down its voltage and frequency.  Since DVFS lowers the frequency of a CPU
133 and consequently its computing power, the execution time of a program running
134 over that scaled down processor may increase, especially if the program is
135 compute bound.  The frequency reduction process can be  expressed by the scaling
136 factor S which is the ratio between  the maximum and the new frequency of a CPU
137 as in (\ref{eq:s}).
138 \begin{equation}
139   \label{eq:s}
140   S = \frac{\Fmax}{\Fnew}
141 \end{equation}
142 The execution time of a compute bound sequential program is linearly
143 proportional to the frequency scaling factor $S$.  On the other hand, message
144 passing distributed applications consist of two parts: computation and
145 communication.  The execution time of the computation part is linearly
146 proportional to the frequency scaling factor $S$ but the communication time is
147 not affected by the scaling factor because the processors involved remain idle
148 during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  The
149 communication time for a task is the summation of periods of time that begin
150 with an MPI call for sending or receiving a message until the message is
151 synchronously sent or received.
152
153 Since in a heterogeneous grid each cluster has different characteristics,
154 especially different frequency gears, when applying DVFS operations on the nodes 
155 of these clusters, they may get different scaling factors represented by a scaling vector:
156 $(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
157 be able to predict the execution time of message passing synchronous iterative
158 applications running over a heterogeneous grid, for different vectors of
159 scaling factors, the communication time and the computation time for all the
160 tasks must be measured during the first iteration before applying any DVFS
161 operation. Then the execution time for one iteration of the application with any
162 vector of scaling factors can be predicted using (\ref{eq:perf}).
163 \begin{equation}
164   \label{eq:perf}
165   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\TcpOld[ij]} \cdot S_{ij}) 
166   +\mathop{\min_{j=1,\dots,M}}  (\Tcm[hj])
167 \end{equation}
168
169 where $N$ is the number of  clusters in the grid, $M$ is the number of  nodes in
170 each cluster, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
171 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
172 first  iteration. The model computes the maximum computation time with scaling factor 
173 from each node added to the communication time of the slowest node in the slowest cluster $h$.
174 It means only the communication time without any slack time is taken into account.  
175 Therefore, the execution time of the iterative application is equal to
176 the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
177 number of iterations of that application.
178
179 This prediction model is developed from the model to predict the execution time
180 of message passing distributed applications for homogeneous and heterogeneous clusters
181 ~\cite{Our_first_paper,pdsec2015}.  The execution time prediction model is
182 used in the method to optimize both the energy consumption and the performance
183 of iterative methods, which is presented in the following sections.
184
185
186 \subsection{Energy model for heterogeneous platform}
187
188 Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
189   Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
190   Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
191 a processor into two power metrics: the static and the dynamic power.  While the
192 first one is consumed as long as the computing unit is turned on, the latter is
193 only consumed during computation times.  The dynamic power $\Pd$ is related to
194 the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
195 and operational frequency $F$, as shown in (\ref{eq:pd}).
196 \begin{equation}
197   \label{eq:pd}
198   \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
199 \end{equation}
200 The static power $\Ps$ captures the leakage power as follows:
201 \begin{equation}
202   \label{eq:ps}
203    \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
204 \end{equation}
205 where V is the supply voltage, $\Ntrans$ is the number of transistors,
206 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
207 technology dependent parameter.  The energy consumed by an individual processor
208 to execute a given program can be computed as:
209 \begin{equation}
210   \label{eq:eind}
211   \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
212 \end{equation}
213 where $T$ is the execution time of the program, $\Tcp$ is the computation
214 time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
215 communication and no slack time.
216
217 The main objective of DVFS operation is to reduce the overall energy
218 consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  The operational
219 frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
220 F$ with some constant $\beta$.~This equation is used to study the change of the
221 dynamic voltage with respect to various frequency values
222 in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction process of the
223 frequency can be expressed by the scaling factor $S$ which is the ratio between
224 the maximum and the new frequency as in (\ref{eq:s}).  The CPU governors are
225 power schemes supplied by the operating system's kernel to lower a core's
226 frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
227 follows:
228 \begin{equation}
229   \label{eq:fnew}
230    \Fnew = S^{-1} \cdot \Fmax
231 \end{equation}
232 Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
233 equation for dynamic power consumption:
234 \begin{multline}
235   \label{eq:pdnew}
236    \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
237    {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
238 \end{multline}
239 where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the
240 new frequency and the maximum frequency respectively.
241
242 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
243 $S^{-3}$ when reducing the frequency by a factor of
244 $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
245 proportional to the frequency of a CPU, the computation time is increased
246 proportionally to $S$.  The new dynamic energy is the dynamic power multiplied
247 by the new time of computation and is given by the following equation:
248 \begin{equation}
249   \label{eq:Edyn}
250    \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp
251 \end{equation}
252 The static power is related to the power leakage of the CPU and is consumed
253 during computation and even when idle. As
254 in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
255 the static power of a processor is considered as constant during idle and
256 computation periods, and for all its available frequencies.  The static energy
257 is the static power multiplied by the execution time of the program.  According
258 to the execution time model in (\ref{eq:perf}), the execution time of the
259 program is the sum of the computation and the communication times. The
260 computation time is linearly related to the frequency scaling factor, while this
261 scaling factor does not affect the communication time.  The static energy of a
262 processor after scaling its frequency is computed as follows:
263 \begin{equation}
264   \label{eq:Estatic}
265   \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
266 \end{equation}
267
268 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
269 different dynamic and static powers from the nodes of the other clusters, 
270 noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Therefore, even if the distributed 
271 message passing iterative application is load balanced, the computation time of each CPU $j$ 
272 in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
273 computed in order to decrease the overall energy consumption of the application
274 and reduce slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
275 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
276 see Figure~\ref{fig:heter}.  Therefore, all nodes do not have equal
277 communication times. While the dynamic energy is computed according to the
278 frequency scaling factor and the dynamic power of each node as in
279 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
280 of one iteration multiplied by the static power of each processor.  The overall
281 energy consumption of a message passing distributed application executed over a
282 heterogeneous grid platform during one iteration is the summation of all dynamic and
283 static energies for $M$ processors in $N$ clusters.  It is computed as follows:
284 \begin{multline}
285   \label{eq:energy}
286  E = \sum_{i=1}^{N} \sum_{i=1}^{M} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
287  \sum_{i=1}^{N} \sum_{j=1}^{M} (\Ps[ij] \cdot {} \\
288   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\Tcp[ij]} \cdot S_{ij}) 
289   +\mathop{\min_{j=1,\dots M}} (\Tcm[hj]) ))
290 \end{multline}
291
292 Reducing the frequencies of the processors according to the vector of scaling
293 factors $(S_{11}, S_{12},\dots, S_{NM})$ may degrade the performance of the application
294 and thus, increase the static energy because the execution time is
295 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
296 for the iterative application can be measured by measuring the energy
297 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
298 of iterations of that application.
299
300 \section{Optimization of both energy consumption and performance}
301 \label{sec.compet}
302
303 Using the lowest frequency for each processor does not necessarily give the most
304 energy efficient execution of an application. Indeed, even though the dynamic
305 power is reduced while scaling down the frequency of a processor, its
306 computation power is proportionally decreased. Hence, the execution time might
307 be drastically increased and during that time, dynamic and static powers are
308 being consumed.  Therefore, it might cancel any gains achieved by scaling down
309 the frequency of all nodes to the minimum and the overall energy consumption of
310 the application might not be the optimal one.  It is not trivial to select the
311 appropriate frequency scaling factor for each processor while considering the
312 characteristics of each processor (computation power, range of frequencies,
313 dynamic and static powers) and the task executed (computation/communication
314 ratio). The aim being to reduce the overall energy consumption and to avoid
315 increasing significantly the execution time.  In our previous
316 work~\cite{Our_first_paper,pdsec2015}, we proposed a method that selects the optimal
317 frequency scaling factor for a homogeneous and heterogeneous clusters executing a message passing
318 iterative synchronous application while giving the best trade-off between the
319 energy consumption and the performance for such applications.  In this work we
320 are interested in heterogeneous grid as described above.  Due to the
321 heterogeneity of the processors, a vector of scaling factors should be selected
322 and it must give the best trade-off between energy consumption and performance.
323
324 The relation between the energy consumption and the execution time for an
325 application is complex and nonlinear, Thus, unlike the relation between the
326 execution time and the scaling factor, the relation between the energy and the
327 frequency scaling factors is nonlinear, for more details refer
328 to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  Moreover, these relations
329 are not measured using the same metric.  To solve this problem, the execution
330 time is normalized by computing the ratio between the new execution time (after
331 scaling down the frequencies of some processors) and the initial one (with
332 maximum frequency for all nodes) as follows:
333 \begin{equation}
334   \label{eq:pnorm}
335   \Pnorm = \frac{\Tnew}{\Told}                 
336 \end{equation}
337
338
339 Where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told})
340 \begin{equation}
341   \label{eq:told}
342    \Told = \mathop{\max_{i=1,2,\dots,N}}_{j=1,2,\dots,M} (\Tcp[ij]+\Tcm[ij])             
343 \end{equation}
344 In the same way, the energy is normalized by computing the ratio between the
345 consumed energy while scaling down the frequency and the consumed energy with
346 maximum frequency for all  nodes:
347 \begin{equation}
348   \label{eq:enorm}
349   \Enorm = \frac{\Ereduced}{\Eoriginal} 
350 \end{equation}
351
352 Where $\Ereduced$  is computed using (\ref{eq:energy}) and $\Eoriginal$ is 
353 computed as in ().
354
355 \textcolor{red}{A reference is missing}
356 \begin{equation}
357   \label{eq:eorginal}
358     \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M} ( \Pd[ij] \cdot  \Tcp[ij])  + 
359      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M} (\Ps[ij] \cdot \Told)       
360 \end{equation}
361
362 While the main goal is to optimize the energy and execution time at the same
363 time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. 
364 According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
365 vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
366 and the execution time simultaneously.  But the main objective is to produce
367 maximum energy reduction with minimum execution time reduction.
368
369 This problem can be solved by making the optimization process for energy and
370 execution time follow the same evolution according to the vector of scaling factors
371 $(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
372 normalized execution time is inverted which gives the normalized performance
373 equation, as follows:
374 \begin{equation}
375   \label{eq:pnorm_inv}
376   \Pnorm = \frac{\Told}{\Tnew}          
377 \end{equation}
378
379 \begin{figure}[!t]
380   \centering
381   \subfloat[Homogeneous cluster]{%
382     \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
383
384   \subfloat[Heterogeneous grid]{%
385     \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
386   \label{fig:rel}
387   \caption{The energy and performance relation}
388 \end{figure}
389
390 Then, the objective function can be modeled in order to find the maximum
391 distance between the energy curve (\ref{eq:enorm}) and the performance curve
392 (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
393 represents the minimum energy consumption with minimum execution time (maximum
394 performance) at the same time, see Figure~\ref{fig:r1} or
395 Figure~\ref{fig:r2}. Then the objective function has the following form:
396 \begin{equation}
397   \label{eq:max}
398   \MaxDist =
399 \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}}_{k=1,\dots,F}
400       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
401        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
402 \end{equation}
403 where $N$ is the number of clusters, $M$ is the number of nodes in each cluster and
404 $F$ is the number of available frequencies for each node.  Then, the optimal set 
405 of scaling factors that satisfies (\ref{eq:max}) can be selected.  
406 The objective function can work with any energy model or any power 
407 values for each node (static and dynamic powers). However, the most important 
408 energy reduction gain can be achieved when the energy curve has a convex form as shown 
409 in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
410
411 \section{The scaling factors selection algorithm for  grids }
412 \label{sec.optim}
413
414 \begin{algorithm}
415   \begin{algorithmic}[1]
416     % \footnotesize
417     \Require ~
418     \begin{description}
419     \item [{$N$}] number of clusters in the grid.
420     \item [{$M$}] number of nodes in each cluster.
421     \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
422     \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
423     \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
424     \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
425     \item[{$\Ps[ij]$}] array of the static powers for all nodes.
426     \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
427     \end{description}
428     \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$,  a vector of scaling factors that gives the optimal tradeoff between energy consumption and execution time
429
430     \State $\Scp[ij] \gets \frac{\max_{i=1,2,\dots,N}(\max_{j=1,2,\dots,M_i}(\Tcp[ij]))}{\Tcp[ij]} $
431     \State $F_{ij} \gets  \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
432     \State Round the computed initial frequencies $F_i$ to the closest  available frequency for each node.
433     \If{(not the first frequency)}
434           \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
435     \EndIf
436     \State $\Told \gets $ computed as in equations (\ref{eq:told}).
437     \State $\Eoriginal \gets $ computed as in equations (\ref{eq:eorginal}) .
438     \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
439     \State $\Dist \gets 0 $
440     \While {(all nodes have not reached their  minimum   \newline\hspace*{2.5em} frequency \textbf{or}  $\Pnorm - \Enorm < 0 $)}
441         \If{(not the last freq. \textbf{and} not the slowest node)}
442         \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
443         \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
444         \EndIf
445        \State $\Tnew \gets $ computed as  in equations (\ref{eq:perf}). 
446        \State $\Ereduced \gets $ computed as  in equations (\ref{eq:energy}). 
447        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
448        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
449       \If{$(\Pnorm - \Enorm > \Dist)$}
450         \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i. $
451         \State $\Dist \gets \Pnorm - \Enorm$
452       \EndIf
453     \EndWhile
454     \State  Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
455   \end{algorithmic}
456   \caption{Scaling factors selection algorithm}
457   \label{HSA}
458 \end{algorithm}
459
460 \begin{algorithm}
461   \begin{algorithmic}[1]
462     % \footnotesize
463     \For {$k=1$ to \textit{some iterations}}
464       \State Computations section.
465       \State Communications section.
466       \If {$(k=1)$}
467         \State Gather all times of computation and\newline\hspace*{3em}%
468                communication from each node.
469         \State Call Algorithm \ref{HSA}.
470         \State Compute the new frequencies from the\newline\hspace*{3em}%
471                returned optimal scaling factors.
472         \State Set the new frequencies to nodes.
473       \EndIf
474     \EndFor
475   \end{algorithmic}
476   \caption{DVFS algorithm}
477   \label{dvfs}
478 \end{algorithm}
479
480 \subsection{The algorithm details}
481
482 \textcolor{red}{Delete the subsection if there's only one.}
483
484 In this section, the scaling factors selection algorithm for  grids, algorithm~\ref{HSA}, is presented. It selects the vector of the frequency
485 scaling factors  that gives the best trade-off between minimizing the
486 energy consumption and maximizing the performance of a message passing
487 synchronous iterative application executed on a  grid. It works
488 online during the execution time of the iterative message passing program.  It
489 uses information gathered during the first iteration such as the computation
490 time and the communication time in one iteration for each node. The algorithm is
491 executed after the first iteration and returns a vector of optimal frequency
492 scaling factors that satisfies the objective function (\ref{eq:max}). The
493 program applies DVFS operations to change the frequencies of the CPUs according
494 to the computed scaling factors.  This algorithm is called just once during the
495 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
496 scaling algorithm is called in the iterative MPI program.
497
498 \begin{figure}[!t]
499   \centering
500   \includegraphics[scale=0.45]{fig/init_freq}
501   \caption{Selecting the initial frequencies}
502   \label{fig:st_freq}
503 \end{figure}
504
505 Nodes from distinct clusters in a grid have different computing powers, thus
506 while executing message passing iterative synchronous applications, fast nodes
507 have to wait for the slower ones to finish their computations before being able
508 to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
509 periods are called idle or slack times.  The algorithm takes into account this
510 problem and tries to reduce these slack times when selecting the vector of the frequency
511 scaling factors. At first, it selects initial frequency scaling factors
512 that increase the execution times of fast nodes and minimize the differences
513 between the computation times of fast and slow nodes. The value of the initial
514 frequency scaling factor for each node is inversely proportional to its
515 computation time that was gathered from the first iteration. These initial
516 frequency scaling factors are computed as a ratio between the computation time
517 of the slowest node and the computation time of the node $i$ as follows:
518 \begin{equation}
519   \label{eq:Scp}
520   \Scp[ij] =  \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]}
521 \end{equation}
522 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
523 algorithm computes the initial frequencies for all nodes as a ratio between the
524 maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
525 follows:
526 \begin{equation}
527   \label{eq:Fint}
528   F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M}
529 \end{equation}
530 If the computed initial frequency for a node is not available in the gears of
531 that node, it is replaced by the nearest available frequency.  In
532 Figure~\ref{fig:st_freq}, the nodes are sorted by their computing powers in
533 ascending order and the frequencies of the faster nodes are scaled down
534 according to the computed initial frequency scaling factors.  The resulting new
535 frequencies are highlighted in Figure~\ref{fig:st_freq}.  This set of
536 frequencies can be considered as a higher bound for the search space of the
537 optimal vector of frequencies because selecting higher frequencies
538 than the higher bound will not improve the performance of the application and it
539 will increase its overall energy consumption.  Therefore the algorithm that
540 selects the frequency scaling factors starts the search method from these
541 initial frequencies and takes a downward search direction toward lower
542 frequencies until reaching the nodes' minimum frequencies or lower bounds. A node's frequency is considered its lower bound if the computed distance between the energy and performance at this frequency is less than zero.
543 A negative distance means that the performance degradation ratio is higher than the energy saving ratio.
544 In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances. 
545
546 Therefore, the algorithm iterates on all remaining frequencies, from the higher
547 bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
548 energy consumption and performance and selects the optimal vector of the frequency scaling
549 factors. At each iteration the algorithm determines the slowest node
550 according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
551 while it lowers the frequency of all other nodes by one gear.  The new overall
552 energy consumption and execution time are computed according to the new scaling
553 factors.  The optimal set of frequency scaling factors is the set that gives the
554 highest distance according to the objective function (\ref{eq:max}).
555
556 Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
557 consumed energy for an application running on a homogeneous cluster and a
558  grid platform respectively while increasing the scaling factors. It can
559 be noticed that in a homogeneous cluster the search for the optimal scaling
560 factor should start from the maximum frequency because the performance and the
561 consumed energy decrease from the beginning of the plot. On the other hand, in
562 the  grid platform the performance is maintained at the beginning of the
563 plot even if the frequencies of the faster nodes decrease until the computing
564 power of scaled down nodes are lower than the slowest node. In other words,
565 until they reach the higher bound. It can also be noticed that the higher the
566 difference between the faster nodes and the slower nodes is, the bigger the
567 maximum distance between the energy curve and the performance curve is, which results in bigger energy savings. 
568
569
570 \section{Experimental results}
571 \label{sec.expe}
572 While in~\cite{pdsec2015} the energy  model and the scaling factors selection algorithm were applied to a heterogeneous cluster and  evaluated over the SimGrid simulator~\cite{SimGrid.org}, 
573 in this paper real experiments were conducted over the grid'5000 platform. 
574
575 \subsection{Grid'5000 architature and power consumption}
576 \label{sec.grid5000}
577 Grid'5000~\cite{grid5000} is a large-scale testbed that consists of ten sites distributed over all metropolitan France and Luxembourg. All the sites are connected together via         a special long distance network called RENATER,
578 which is the French National Telecommunication Network for Technology.
579 Each site of the grid is composed of few heterogeneous 
580 computing clusters and each cluster contains many homogeneous nodes. In total,
581  grid'5000 has about  one thousand heterogeneous nodes and eight thousand cores.  In each site,
582 the clusters and their nodes are connected via  high speed local area networks. 
583 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
584
585 Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture 
586 the power consumption  for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ...  For more details refer to
587 \cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$, 
588  firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $P\max[jx]$. The difference between the two measured power consumption represents the 
589 dynamic power consumption of that core with the maximum frequency, see  figure(\ref{fig:power_cons}). 
590
591 \textcolor{red}{why maximum and minimum, change peak in the equation and the figure}
592
593 The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
594 \begin{equation}
595   \label{eq:pdyn}
596     \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (P\max[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
597 \end{equation}
598
599 where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
600 $\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured peak power values, 
601 $\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
602 Therefore, the dynamic power of one core is computed as the difference between the maximum 
603 measured value in peak powers vector and the minimum measured value in the idle powers vector.
604
605 On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed as  np[\%]{20} of dynamic power consumption of the core.
606
607 In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
608
609 Four clusters from the two sites were selected in the experiments: one cluster from 
610 Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene, 
611 Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
612 frequency ranges and local network features: the bandwidth and the latency.  Table \ref{table:grid5000} shows 
613 the details characteristics of these four clusters. Moreover, the dynamic powers were computed  using the equation (\ref{eq:pdyn}) for all the nodes in the 
614 selected clusters and are presented in table  \ref{table:grid5000}.
615
616
617
618
619 \begin{figure}[!t]
620   \centering
621   \includegraphics[scale=1]{fig/grid5000}
622   \caption{The selected two sites of grid'5000}
623   \label{fig:grid5000}
624 \end{figure}
625
626
627 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
628 The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
629 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections. 
630
631
632
633
634 \begin{figure}[!t]
635   \centering
636   \includegraphics[scale=0.6]{fig/power_consumption.pdf}
637   \caption{The power consumption by one core from Taurus cluster}
638   \label{fig:power_cons}
639 \end{figure}
640
641
642
643   
644 \begin{table}[!t]
645   \caption{CPUs characteristics of the selected clusters}
646   % title of Table
647   \centering
648   \begin{tabular}{|*{7}{c|}}
649     \hline
650     Cluster     & CPU         & Max   & Min   & Diff. & no. of cores    & dynamic power   \\
651     Name        & model       & Freq. & Freq. & Freq. & per CPU         & of one core     \\
652                 &             & GHz   & GHz   & GHz   &                 &           \\
653     \hline
654     Taurus      & Intel       & 2.3  & 1.2  & 0.1     & 6               & \np[W]{35} \\
655                 & Xeon        &       &       &       &                 &            \\
656                 & E5-2630     &       &       &       &                 &            \\         
657     \hline
658     Graphene    & Intel       & 2.53  & 1.2   & 0.133 & 4               & \np[W]{23} \\
659                 & Xeon        &       &       &       &                 &            \\
660                 & X3440       &       &       &       &                 &            \\    
661     \hline
662     Griffon     & Intel       & 2.5   & 2     & 0.5   & 4               & \np[W]{46} \\
663                 & Xeon        &       &       &       &                 &            \\
664                 & L5420       &       &       &       &                 &            \\  
665     \hline
666     Graphite    & Intel       & 2     & 1.2   & 0.1   & 8               & \np[W]{35} \\
667                 & Xeon        &       &       &       &                 &            \\
668                 & E5-2650     &       &       &       &                 &            \\  
669     \hline
670   \end{tabular}
671   \label{table:grid5000}
672 \end{table} 
673
674
675
676 \subsection{The experimental results of the scaling algorithm}
677 \label{sec.res}
678 In this section, the scaling factor selection algorithm \ref{HSA}, is applied 
679 to NAS parallel benchmarks. Seven benchmarks, CG, MG, EP, LU, BT, SP and FT, of the class D
680 are executed over grid'5000 computing clusters. As mentioned previously, the experiments 
681 of this paper obtained from a collection of many clusters distributed in two sites, Lyon and Nancy sites, 
682 of grid'5000. Four different clusters are selected from these two sites to generate two 
683 different scenarios. Each of these two scenarios used three clusters. The first scenario,
684 is composed from three clusters that located in two sites, Lyon and Nancy sites. One of these three
685 clusters is from Lyon site, Taurus cluster and the other two clusters are form Nancy site, 
686 Graphene and Griffon clusters. The second scenario, is composed from three clusters that are 
687 located in one site, Nancy site. These cluster are Graphite, Graphene and griffon. The main reason 
688 behind using these two scenarios is because the first one is executing the NAS parllel benchmarks over 
689 two sites that are connected via long distance network, then the computations to communications ratio 
690 is very low due to the increase in communication times, while in the second scenario, all of the three clusters are 
691 located in one site and they are connected via high speed local area networks, where the computations 
692 to communications ratio is higher. Therefore, it is very interested to know the performance behaviour 
693 and the energy consumption of NAS parallel benchmarks using the proposed method, when they run 
694 over these two different platform scenarios. Moreover, The NAS parallel benchmarks are executed over 
695 16 and 32 nodes for each scenario. The number of participating computing nodes form each cluster 
696 are different, this  depends on the available number of nodes in each cluster. 
697 Table \ref{tab:sc} shows the details of these two scenarios and the number of nodes 
698 used from each cluster.
699
700 \begin{table}[h]
701
702 \caption{The different clusters scenarios}
703 \centering
704 \begin{tabular}{|*{3}{c|}}
705 \hline
706 \multirow{2}{*}{Scenario name}        & \multicolumn{2}{c|} {The participating clusters} \\ \cline{2-3} 
707                                       & Cluster name           & No. of  nodes of each cluster     \\ 
708 \hline
709 \multirow{3}{*}{Two sites / 16 nodes} & Taurus                 & 5                      \\ \cline{2-3} 
710                                       & Graphene               & 5                      \\ \cline{2-3} 
711                                       & Griffon                & 6                      \\ 
712 \hline
713 \multirow{3}{*}{Tow sites / 32 nodes} & Taurus                 & 10                     \\ \cline{2-3} 
714                                       & Graphene               & 10                     \\ \cline{2-3} 
715                                       & Griffon                & 12                     \\ 
716 \hline
717 \multirow{3}{*}{One site / 16 nodes}  & Graphite               & 4                      \\ \cline{2-3} 
718                                       & Graphene               & 6                      \\ \cline{2-3} 
719                                       & Griffon                & 6                      \\ 
720 \hline
721 \multirow{3}{*}{One site / 32 nodes}  & Graphite               & 4                      \\ \cline{2-3} 
722                                       & Graphene               & 12                     \\ \cline{2-3} 
723                                       & Griffon                & 12                       \\ 
724 \hline
725 \end{tabular}
726  \label{tab:sc}
727 \end{table}
728
729 \begin{figure}
730   \centering
731   \includegraphics[scale=0.5]{fig/eng_con_scenarios.eps}
732   \caption{The energy consumptions of NAS benchmarks over different scenarios }
733   \label{fig:eng_sen}
734 \end{figure}
735
736
737
738 \begin{figure}
739   \centering
740   \includegraphics[scale=0.5]{fig/time_scenarios.eps}
741   \caption{The execution times of NAS benchmarks over different scenarios }
742   \label{fig:time_sen}
743 \end{figure}
744
745 The NAS parallel benchmarks are executed over these two platform
746 scenarios with different number of nodes, as in Table \ref{tab:sc}. 
747 The overall energy consumption of all benchmark, class D, with 
748 applying the proposed frequency selection algorithm is measured 
749 using the equation of the reduced energy consumption, equation 
750 (\ref{eq:energy}). This model uses the measured dynamic and static 
751 power values that showed in Table \ref{table:grid5000}. The execution
752 time is measured for all benchmarks over these different scenarios.  
753 The energy consumptions  and the execution times for all benchmarks are 
754 demonstrated in the plots \ref{fig:eng_sen} and \ref{fig:time_sen} respectively. 
755 In general, the energy consumptions of NAS benchmarks over one site scenario 
756 for  16 and 32 nodes are less than those executed over the two sites 
757 scenarios. This because in the two sites scenario the communication times 
758 are higher, due to long distance communications between the two distributed sites. 
759 This leading to more static energy consumption which is linearly related to the 
760 increased in the communication time. The execution times of these benchmarks 
761 over one sites for 16 and 32 nodes are less  comparing to the two sites 
762 scenario according to the increase in communications times.
763
764 The EP and MG benchmarks, where there are no or small communications, showed 
765 that their execution times and the energy consumptions are not effected 
766 significantly in both scenarios and when the number of nodes is increase, 
767 while the other benchmarks showed the inverse, because they have more communications 
768 that proportionally increase the communication times if there are slow 
769 communications or using more number of nodes or both of them.
770
771 \begin{figure}
772   \centering
773   \includegraphics[scale=0.5]{fig/eng_s.eps}
774   \caption{The energy saving of NAS benchmarks over different scenarios }
775   \label{fig:eng_s}
776 \end{figure}
777
778
779 \begin{figure}
780   \centering
781   \includegraphics[scale=0.5]{fig/per_d.eps}
782   \caption{The performance degradation of NAS benchmarks over different scenarios }
783   \label{fig:per_d}
784 \end{figure}
785
786
787 \begin{figure}
788   \centering
789   \includegraphics[scale=0.5]{fig/dist.eps}
790   \caption{The tradeoff distance of NAS benchmarks over different scenarios }
791   \label{fig:dist}
792 \end{figure}
793
794 The energy saving percentage is computed as the ratio between the reduced 
795 energy consumption, equation (\ref{eq:energy}), and the original energy consumption,
796 equation (\ref{eq:eorginal}), for all benchmarks as in figure \ref{fig:eng_s}. 
797 This figure shows that the energy saving percentages of one site scenario for
798 16 and 32 nodes are bigger than those of the two sites scenario. This is because
799 the computations to communications ratio in  one site scenario is higher 
800 than the ratio of the two sites scenarios, due to the increase in the communication
801 times. Moreover, the frequencies selecting algorithm selects smaller frequencies, bigger
802 scaling factors, when the computations times are higher than communication times, 
803 producing  smaller energy consumption, because the dynamic energy consumption 
804 is decreased linearly with computation times that decreased exponentially with 
805 scaling factors. On the other side, the increase in the number of computing nodes can be 
806 increase the communication times and thus producing less energy saving depending on the 
807 benchmarks being executed. The benchmarks CG, MG, BT and FT show more 
808 energy saving percentage in one site scenario when executed  over 16 nodes comparing to 32 nodes. While 
809 the benchmarks  LU and SP showed the inverse, because there computations to 
810 communications ratio is not effected to the increase in local site communications. 
811 While all benchmarks are effected by the long distance communications in the two sites 
812 scenarios, except  EP benchmarks. In EP benchmark  there is no communications 
813 in their iterations, then it is independent from the effect of local and long 
814 distance communications. Therefore, the energy saving percentage of this benchmarks is 
815 depend on differences between the computing powers of the computing nodes, for example 
816 in the one site scenario, the graphite cluster is selected but in the two sits scenario 
817 this cluster is replaced with Taurus cluster that be more powerful in computing power. 
818 Therefore, the energy saving of EP benchmarks are bigger in the two site scenario due 
819 to increase in the differences between the computing powers of the nodes. This means, the higher 
820 differences between the nodes' computing powers make the proposed frequencies selecting  
821 algorithm  to selects smaller frequencies in the nodes of the higher computing power, 
822 producing less energy consumption and thus more energy saving.
823 The best energy saving percentage was for one site scenario with 16 nodes, on average it
824 saves the energy consumption up to 30\%. 
825
826 Figure \ref{fig:per_d}, presents the performance degradation percentages for all benchmarks.
827 It shows that the performance degradation percentages  of the one site scenario with
828 32 nodes, on average equal to 10\%, is higher than the performance degradation of one 16 nodes, 
829 which on average equal to 3\%. This because selecting smaller frequencies in the one site scenarios,
830 when the computations grater than the communications , increase the number of the critical nodes 
831 when the number of nodes increased. The inverse happens in the tow sites scenario,
832 this due to the lower computations to communications ratio that decreased with highest 
833 communications. Therefore, the number of the critical nodes are decreased. The average performance 
834 degradation for the two sites scenario with 16 nodes is equal to 8\% and for 32 nodes is equal to 4\%.
835 The EP benchmarks is gives the bigger performance degradation ratio, because there is no 
836 communications and no slack times in this benchmarks that is always their performance effected 
837 by selecting big or small frequencies.
838 The tradeoff between these scenarios can be computed as in the trade-off function \ref{eq:max}.
839 Figure \ref{fig:dist}, presents the tradeoff distance for all benchmarks  over all 
840 platform scenarios.  The one site scenario with 16 and 32 nodes had the best tradeoff distance 
841 compared to the two sites scenarios, because the increase in the communications as mentioned before.
842 The one site scenario with 16 nodes is the best scenario in term of energy and performance tradeoff,
843 which on average is up 26\%.  Then, the tradeoff distance is related linearly to the  energy saving  
844 percentage. Finally, the best energy and performance tradeoff depends on the increase in all of:
845 1) the computations to communications ratio, 2) the differences in computing powers 
846 between the computing nodes and 3) the differences in static and the dynamic powers of the nodes.
847
848 \subsection{The experimental results of multi-cores clusters}
849 \label{sec.res}
850
851 \subsection{The results for different power consumption scenarios}
852 \label{sec.compare}
853
854
855
856
857 \subsection{The comparison of the proposed scaling algorithm }
858 \label{sec.compare_EDP}
859
860
861
862 \section{Conclusion}
863 \label{sec.concl}
864
865
866
867 \section*{Acknowledgment}
868
869 This work  has been  partially supported by  the Labex ACTION  project (contract
870 ``ANR-11-LABX-01-01'').  Computations  have been performed  on the supercomputer
871 facilities  of the  Mésocentre de  calcul de  Franche-Comté. As  a  PhD student,
872 Mr. Ahmed  Fanfakh, would  like to  thank the University  of Babylon  (Iraq) for
873 supporting his work.
874
875 % trigger a \newpage just before the given reference
876 % number - used to balance the columns on the last page
877 % adjust value as needed - may need to be readjusted if
878 % the document is modified later
879 %\IEEEtriggeratref{15}
880
881 \bibliographystyle{IEEEtran}
882 \bibliography{IEEEabrv,my_reference}
883 \end{document}
884
885 %%% Local Variables:
886 %%% mode: latex
887 %%% TeX-master: t
888 %%% fill-column: 80
889 %%% ispell-local-dictionary: "american"
890 %%% End:
891
892 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
893 % LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
894 % LocalWords:  de badri muslim MPI SimGrid GFlops Xeon EP BT GPUs CPUs AMD
895 %  LocalWords:  Spiliopoulos scalability