]> AND Private Git Repository - mpi-energy2.git/blob - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Use \dots for ellipsis.
[mpi-energy2.git] / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{subfig}
9 \usepackage{amsmath}
10
11 \usepackage{url}
12 \DeclareUrlCommand\email{\urlstyle{same}}
13
14 \usepackage[autolanguage,np]{numprint}
15 \AtBeginDocument{%
16   \renewcommand*\npunitcommand[1]{\text{#1}}
17   \npthousandthpartsep{}}
18
19 \usepackage{xspace}
20 \usepackage[textsize=footnotesize]{todonotes}
21 \newcommand{\AG}[2][inline]{%
22   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
23 \newcommand{\JC}[2][inline]{%
24   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
27
28 \newcommand{\Dist}{\textit{Dist}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Fdiff}{\Xsub{F}{diff}}
34 \newcommand{\Fmax}{\Xsub{F}{max}}
35 \newcommand{\Fnew}{\Xsub{F}{new}}
36 \newcommand{\Ileak}{\Xsub{I}{leak}}
37 \newcommand{\Kdesign}{\Xsub{K}{design}}
38 \newcommand{\MaxDist}{\textit{Max Dist}}
39 \newcommand{\Ntrans}{\Xsub{N}{trans}}
40 \newcommand{\Pdyn}{\Xsub{P}{dyn}}
41 \newcommand{\PnormInv}{\Xsub{P}{NormInv}}
42 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
43 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
44 \newcommand{\Pstates}{\Xsub{P}{states}}
45 \newcommand{\Pstatic}{\Xsub{P}{static}}
46 \newcommand{\Sopt}{\Xsub{S}{opt}}
47 \newcommand{\Tcomp}{\Xsub{T}{comp}}
48 \newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
49 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
50 \newcommand{\Tmax}{\Xsub{T}{max}}
51 \newcommand{\Tnew}{\Xsub{T}{New}}
52 \newcommand{\Told}{\Xsub{T}{Old}}
53
54 \begin{document}
55
56 \title{Energy Consumption Reduction in heterogeneous architecture using DVFS}
57
58 \author{%
59   \IEEEauthorblockN{%
60     Jean-Claude Charr,
61     Raphaël Couturier,
62     Ahmed Fanfakh and
63     Arnaud Giersch
64   }
65   \IEEEauthorblockA{%
66     FEMTO-ST Institute\\
67     University of Franche-Comté\\
68     IUT de Belfort-Montbéliard,
69     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
70     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
71     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
72     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
73    }
74   }
75
76 \maketitle
77
78 \begin{abstract}
79   
80 \end{abstract}
81
82 \section{Introduction}
83 \label{sec.intro}
84
85
86 \section{Related works}
87 \label{sec.relwork}
88
89
90
91
92
93 \section{The performance and energy consumption measurements on heterogeneous architecture}
94 \label{sec.exe}
95
96 % \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
97 %   can be deleted if we need space, we can just say we are interested in this
98 %   paper in homogeneous clusters}
99
100 \subsection{The execution time of message passing distributed iterative applications on a heterogeneous platform}
101
102 In this paper, we are interested in reducing the energy consumption of message
103 passing distributed iterative synchronous applications running over
104 heterogeneous platforms. We define a heterogeneous platform as a collection of
105 heterogeneous computing nodes interconnected via a high speed homogeneous
106 network. Therefore, each node has different characteristics such as computing
107 power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
108 have the same network bandwidth and latency.
109
110
111 \begin{figure}[t]
112   \centering
113     \includegraphics[scale=0.6]{fig/commtasks}
114   \caption{Parallel tasks on a heterogeneous platform}
115   \label{fig:heter}
116 \end{figure}
117
118  The  overall execution time  of a distributed iterative synchronous application over a heterogeneous platform  consists of the sum of the computation time and the communication time for every iteration on a node. However, due to the heterogeneous computation power of the computing nodes, slack times might occur when fast nodes have to
119  wait, during synchronous communications, for  the slower nodes to finish  their computations (see Figure~(\ref{fig:heter})). 
120  Therefore,  the overall execution time  of the program is the execution time of the slowest
121  task which have the highest computation time and no slack time.
122  
123 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in modern processors, that reduces the energy consumption
124 of a CPU by scaling down its voltage and frequency.  Since DVFS lowers the frequency of a CPU and consequently its computing power, the execution time of a program running over that scaled down processor might increase, especially if the program is compute bound.  The frequency reduction process can be  expressed by the scaling factor S which is the ratio between  the maximum and the new frequency of a CPU as in EQ (\ref{eq:s}).
125 \begin{equation}
126   \label{eq:s}
127  S = \frac{F_\textit{max}}{F_\textit{new}}
128 \end{equation}
129  The execution time of a compute bound sequential program is linearly proportional to the frequency scaling factor $S$. 
130  On the other hand,  message passing distributed applications consist of two parts: computation and communication. The execution time of the computation part is linearly proportional to the frequency scaling factor $S$ but  the communication time is not affected by the scaling factor because  the processors involved remain idle during the  communications~\cite{17}. The communication time for a task is the summation of periods of time that begin with an MPI call for sending or receiving   a message till the message is synchronously sent or received.
131
132 Since in a heterogeneous platform, each node has different characteristics,
133 especially different frequency gears, when applying DVFS operations on these
134 nodes, they may get different scaling factors represented by a scaling vector:
135 $(S_1, S_2,\dots, S_N)$ where $S_i$ is the scaling factor of processor $i$. To
136 be able to predict the execution time of message passing synchronous iterative
137 applications running over a heterogeneous platform, for different vectors of
138 scaling factors, the communication time and the computation time for all the
139 tasks must be measured during the first iteration before applying any DVFS
140 operation. Then the execution time for one iteration of the application with any
141 vector of scaling factors can be predicted using EQ (\ref{eq:perf}).
142  
143   
144   
145 \begin{multline}
146   \label{eq:perf}
147  \textit  T_\textit{new} = 
148  {} \max_{i=1,2,\dots,N} (TcpOld_{i} \cdot S_{i}) +  TcmOld_{j}
149 \end{multline}
150 where $TcpOld_i$ is the computation time  of processor $i$ during the first iteration and $TcmOld_j$ is the communication time of the slowest processor $j$.
151   The model computes the maximum computation time 
152  with scaling factor from each node  added to the communication time of the slowest node, it means  only the
153  communication time without any slack time. 
154
155 This prediction model is based on our model for predicting the execution time of message passing distributed applications for homogeneous architectures~\cite{45}. The execution time prediction model is used in our method for optimizing both energy consumption and performance of iterative methods, which is presented in the following sections.
156
157
158 \subsection{Energy model for heterogeneous platform}
159
160 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
161 two power metrics: the static and the dynamic power.  While the first one is
162 consumed as long as the computing unit is turned on, the latter is only consumed during
163 computation times.  The dynamic power $P_{d}$ is related to the switching
164 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
165 operational frequency $F$, as shown in EQ(\ref{eq:pd}).
166 \begin{equation}
167   \label{eq:pd}
168   P_\textit{d} = \alpha \cdot C_L \cdot V^2 \cdot F
169 \end{equation}
170 The static power $P_{s}$ captures the leakage power as follows:
171 \begin{equation}
172   \label{eq:ps}
173    P_\textit{s}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
174 \end{equation}
175 where V is the supply voltage, $N_{trans}$ is the number of transistors,
176 $K_{design}$ is a design dependent parameter and $I_{leak}$ is a
177 technology-dependent parameter.  The energy consumed by an individual processor
178 to execute a given program can be computed as:
179 \begin{equation}
180   \label{eq:eind}
181    E_\textit{ind} =  P_\textit{d} \cdot T_{cp} + P_\textit{s} \cdot T
182 \end{equation}
183 where $T$ is the execution time of the program, $T_{cp}$ is the computation
184 time and $T_{cp} \leq T$.  $T_{cp}$ may be equal to $T$ if there is no
185 communication and no slack time.
186
187 The main objective of DVFS operation is to
188 reduce the overall energy consumption~\cite{37}.  The operational frequency $F$
189 depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
190 constant $\beta$.  This equation is used to study the change of the dynamic
191 voltage with respect to various frequency values in~\cite{3}.  The reduction
192 process of the frequency can be expressed by the scaling factor $S$ which is the
193 ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
194 The CPU governors are power schemes supplied by the operating
195 system's kernel to lower a core's frequency. we can calculate the new frequency 
196 $F_{new}$ from EQ(\ref{eq:s}) as follow:
197 \begin{equation}
198   \label{eq:fnew}
199    F_\textit{new} = S^{-1} .  F_\textit{max}
200 \end{equation}
201 Replacing $F_{new}$ in EQ(\ref{eq:pd}) as in EQ(\ref{eq:fnew}) gives the following equation for dynamic 
202 power consumption:
203 \begin{multline}
204   \label{eq:pdnew}
205    {P}_\textit{dNew} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
206    = \alpha \cdot C_L \cdot V^2 \cdot F \cdot S^{-3} = P_{dOld} \cdot S^{-3}
207 \end{multline}
208 where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the new frequency and the maximum frequency respectively.
209
210 According to EQ(\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
211 reducing the frequency by a factor of $S$~\cite{3}. Since the FLOPS of a CPU is proportional to the frequency of a CPU, the computation time is increased proportionally to $S$.  The new dynamic energy is the  dynamic power multiplied by the new time of computation and is given by the following equation:
212 \begin{equation}
213   \label{eq:Edyn}
214    E_\textit{dNew} = P_{dOld} \cdot S^{-3} \cdot (T_{cp} \cdot S)= S^{-2}\cdot P_{dOld} \cdot  T_{cp} 
215 \end{equation}
216 The static power is related to the power leakage of the CPU and is consumed during computation and even when idle. As in~\cite{3,46}, we assume that the static power of a processor is constant during idle and computation periods, and for all its available frequencies. 
217 The static energy is the static power multiplied by the execution time of the program. According to the execution time model in EQ(\ref{eq:perf}), 
218 the execution time of the program is the summation of the computation and the communication times. The computation time is linearly related  
219 to the frequency scaling factor, while this scaling factor does not affect the communication time. The static energy 
220 of a processor after scaling its frequency is computed as follows: 
221
222 \begin{equation}
223   \label{eq:Estatic}
224  E_\textit{s} = P_\textit{s} \cdot (T_{cp} \cdot S  + T_{cm})
225 \end{equation}
226
227 In the considered heterogeneous platform, each processor $i$ might have different dynamic and static powers, noted as $P_{di}$ and $P_{si}$ respectively. Therefore, even if the distributed message passing iterative application is load balanced, the computation time of each CPU $i$ noted $T_{cpi}$ might be different and different frequency  scaling factors might be computed in order to decrease the overall energy consumption of the application and reduce the slack times. The communication time of a processor $i$ is noted as $T_{cmi}$ and could contain slack times if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do not have equal communication times. While the dynamic energy is computed according to the  frequency scaling factor and the dynamic power of each node as in EQ(\ref{eq:Edyn}),  the static energy is computed as the sum of the execution time of each processor multiplied by its static power. The overall energy consumption of a message passing  distributed application  executed over a heterogeneous platform is the summation of all dynamic and static energies for each  processor.  It is computed as follows:
228 \begin{multline}
229   \label{eq:energy}
230  E = \sum_{i=1}^{N} {(S_i^{-2} \cdot P_{di} \cdot  T_{cpi})} +\\ 
231  {}\sum_{i=1}^{N} {(P_{si} \cdot (\max_{i=1,2,\dots,N} (T_{cpi} \cdot S_{i}) +} 
232  {}\min_{i=1,2,\dots,N} {T_{cmi}))} 
233  \end{multline}
234  
235 Reducing the the frequencies of the processors according to the vector of
236 scaling factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the
237 application and thus, increase the static energy because the execution time is
238 increased~\cite{36}.
239
240 \section{Optimization of both energy consumption and performance}
241 \label{sec.compet}
242
243 Applying DVFS to lower level not surly reducing the energy consumption to
244 minimum level. Also, a big scaling for the frequency produces high performance
245 degradation percent. Moreover, by considering the drastically increase in
246 execution time of parallel program, the static energy is related to this time
247 and it also increased by the same ratio. Thus, the opportunity for gaining more
248 energy reduction is restricted. For that choosing frequency scaling factors is
249 very important process to taking into account both energy and performance. In
250 our previous work~\cite{45}, we are proposed a method that selects the optimal
251 frequency scaling factor for an homogeneous cluster, depending on the trade-off
252 relation between the energy and performance. In this work we have an
253 heterogeneous cluster, at each node there is different scaling factors, so our
254 goal is to selects the optimal set of frequency scaling factors,
255 $Sopt_1,Sopt_2,\dots,Sopt_N$, that gives the best trade-off between energy
256 consumption and performance. The relation between the energy and the execution
257 time is complex and nonlinear, Thus, unlike the relation between the performance
258 and the scaling factor, the relation of the energy with the frequency scaling
259 factors is nonlinear, for more details refer to~\cite{17}.  Moreover, they are
260 not measured using the same metric.  To solve this problem, we normalize the
261 execution time by calculating the ratio between the new execution time (the
262 scaled execution time) and the old one as follow:
263 \begin{multline}
264   \label{eq:pnorm}
265   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
266           = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}} 
267            {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
268 \end{multline}
269
270
271 By the same way, we are normalize the energy by calculating the ratio between the consumed energy with scaled frequency and the consumed energy without scaled frequency:
272 \begin{multline}
273   \label{eq:enorm}
274   E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
275    = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +
276  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
277  \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
278 \end{multline} 
279 Where $T_{New}$ and $T_{Old}$ is computed as in EQ(\ref{eq:pnorm}). The second
280 problem is that the optimization operation for both energy and performance is
281 not in the same direction.  In other words, the normalized energy and the
282 normalized execution time curves are not at the same direction.  While the main
283 goal is to optimize the energy and execution time in the same time.  According
284 to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the set of frequency
285 scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy and the execution
286 time simultaneously.  But the main objective is to produce maximum energy
287 reduction with minimum execution time reduction.  Many researchers used
288 different strategies to solve this nonlinear problem for example
289 see~\cite{19,42}, their methods add big overheads to the algorithm to select the
290 suitable frequency.  In this paper we are present a method to find the optimal
291 set of frequency scaling factors to optimize both energy and execution time
292 simultaneously without adding a big overhead.  Our solution for this problem is
293 to make the optimization process for energy and execution time follow the same
294 direction.  Therefore, we inverse the equation of the normalized execution time,
295 the normalized performance, as follows:
296
297 \begin{multline}
298   \label{eq:pnorm_inv}
299   P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
300           = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
301             { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}} 
302 \end{multline}
303
304
305 \begin{figure}
306   \centering
307   \subfloat[Homogeneous platform]{%
308     \includegraphics[width=.22\textwidth]{fig/homo}\label{fig:r1}}%
309   \qquad%
310   \subfloat[Heterogeneous platform]{%
311     \includegraphics[width=.22\textwidth]{fig/heter}\label{fig:r2}}
312   \label{fig:rel}
313   \caption{The energy and performance relation}
314 \end{figure}
315
316 Then, we can model our objective function as finding the maximum distance
317 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
318 curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
319 represents the minimum energy consumption with minimum execution time (better
320 performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}) .  Then our objective
321 function has the following form:
322 \begin{multline}
323   \label{eq:max}
324   Max Dist = 
325   \max_{i=1,\dots F, j=1,\dots,N}
326       (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
327        \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
328 \end{multline}
329 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each nodes. 
330 Then we can select the optimal set of scaling factors that satisfies EQ~(\ref{eq:max}).  Our objective function can
331 work with any energy model or energy values stored in a data file.
332 Moreover, this function works in optimal way when the energy curve has a convex
333 form over the available frequency scaling factors as shown in~\cite{15,3,19}.
334
335 \section{The heterogeneous scaling algorithm }
336 \label{sec.optim}
337
338 In this section we proposed an heterogeneous scaling algorithm,
339 (figure~\ref{HSA}), that selects the optimal set of scaling factors from each
340 node.  The algorithm is numerates the suitable range of available scaling
341 factors for each node in the heterogeneous cluster, returns a set of optimal
342 frequency scaling factors for each node. Using heterogeneous cluster is produces
343 different workloads for each node. Therefore, the fastest nodes waiting at the
344 barrier for the slowest nodes to finish there work as in figure
345 (\ref{fig:heter}). Our algorithm takes into account these imbalanced workloads
346 when is starts to search for selecting the best scaling factors. So, the
347 algorithm is selecting the initial frequencies values for each node proportional
348 to the times of computations that gathered from the first iteration. As an
349 example in figure (\ref{fig:st_freq}), the algorithm don't test the first
350 frequencies of the fastest nodes until it converge their frequencies to the
351 frequency of the slowest node. If the algorithm is starts test changing the
352 frequency of the slowest nodes from beginning, we are loosing performance and
353 then not selecting the best trade-off (the distance). This case will be similar
354 to the homogeneous cluster when all nodes scales their frequencies together from
355 the beginning. In this case there is a small distance between energy and
356 performance curves, for example see the figure(\ref{fig:r1}).  Then the
357 algorithm searching for optimal frequency scaling factor from the selected
358 frequencies until the last available ones.
359 \begin{figure}[t]
360   \centering
361     \includegraphics[scale=0.5]{fig/start_freq}
362   \caption{Selecting the initial frequencies}
363   \label{fig:st_freq}
364 \end{figure}
365
366
367 To compute the initial frequencies, the algorithm firstly needs to compute the computation scaling factors $Scp_i$ for each node. Each one of these factors represent a ratio between the computation time of the slowest node and the computation time of the node $i$ as follow:
368 \begin{equation}
369   \label{eq:Scp}
370  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
371 \end{equation}
372 Depending on the initial computation scaling factors EQ(\ref{eq:Scp}), the algorithm computes the initial frequencies for all nodes as a ratio between the 
373 maximum frequency of node $i$  and the computation scaling factor $Scp_i$ as follow:
374 \begin{equation}
375   \label{eq:Fint}
376  F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
377 \end{equation}
378 \begin{figure}[tp]
379   \begin{algorithmic}[1]
380     % \footnotesize
381     \Require ~
382     \begin{description}
383     \item[$Tcp_i$] array of all computation times for all nodes during one iteration and with highest frequency.
384     \item[$Tcm_i$] array of all communication times for all nodes during one iteration and with highest frequency.
385     \item[$Fmax_i$] array of the maximum frequencies for all nodes.
386     \item[$Pd_i$] array of the dynamic powers for all nodes.
387     \item[$Ps_i$] array of the static powers for all nodes.
388     \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
389     \end{description}
390     \Ensure $Sopt_1, \dots, Sopt_N$ is a set of optimal scaling factors
391
392     \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
393     \State $F_{i} \gets  \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
394     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
395     \If{(not the first frequency)}
396           \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
397     \EndIf 
398     \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
399     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
400     \State $Dist \gets 0$
401     \State  $Sopt_{i} \gets 1,~i=1,\dots,N. $
402     \While {(all nodes not reach their  minimum  frequency)}
403         \If{(not the last freq. \textbf{and} not the slowest node)}
404         \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
405         \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,\dots,N.$
406         \EndIf
407        \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + min_\textit{~i=1,\dots,N}(Tcm_i) $
408        \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} + $  \hspace*{43 mm} 
409                $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
410        \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
411        \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
412       \If{$(\Pnorm - \Enorm > \Dist)$}
413         \State $Sopt_{i} \gets S_{i},~i=1,\dots,N. $
414         \State $\Dist \gets \Pnorm - \Enorm$
415       \EndIf
416     \EndWhile
417     \State  Return $Sopt_1,Sopt_2,\dots,Sopt_N$
418   \end{algorithmic}
419   \caption{Heterogeneous scaling algorithm}
420   \label{HSA}
421 \end{figure}
422 When the initial frequencies are computed the algorithm numerates all available
423 scaling factors starting from these frequencies until all nodes reach their
424 minimum frequencies. At each iteration the algorithm remains the frequency of
425 the slowest node without change and scaling the frequency of the other
426 nodes. This is gives better performance and energy trade-off.  The proposed
427 algorithm works online during the execution time of the MPI program.  Its
428 returns a set of optimal frequency scaling factors $Sopt_i$ depending on the
429 objective function EQ(\ref{eq:max}). The program changes the new frequencies of
430 the CPUs according to the computed scaling factors.  This algorithm has a small
431 execution time: for an heterogeneous cluster composed of four different types of
432 nodes having the characteristics presented in table~(\ref{table:platform}), it
433 takes \np[ms]{0.04} on average for 4 nodes and \np[ms]{0.1} on average for 128
434 nodes.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the
435 number of iterations and $N$ is the number of computing nodes. The algorithm
436 needs on average from 12 to 20 iterations for all the NAS benchmark on class C
437 to selects the best set of frequency scaling factors. Its called just once
438 during the execution of the program.  The DVFS figure~(\ref{dvfs}) shows where
439 and when the algorithm is called in the MPI program.
440 \begin{figure}[tp]
441   \begin{algorithmic}[1]
442     % \footnotesize
443     \For {$k=1$ to \textit{some iterations}}
444       \State Computations section.
445       \State Communications section.
446       \If {$(k=1)$}
447         \State Gather all times of computation and\newline\hspace*{3em}%
448                communication from each node.
449         \State Call algorithm from Figure~\ref{HSA} with these times.
450         \State Compute the new frequencies from the\newline\hspace*{3em}%
451                returned optimal scaling factors.
452         \State Set the new frequencies to nodes.
453       \EndIf
454     \EndFor
455   \end{algorithmic}
456   \caption{DVFS algorithm}
457   \label{dvfs}
458 \end{figure}
459
460 \section{Experimental results}
461 \label{sec.expe}
462
463 The experiments of this work are executed on the simulator SimGrid/SMPI
464 v3.10~\cite{casanova+giersch+legrand+al.2014.versatile}. We configure the
465 simulator to use a heterogeneous cluster with one core per node. The proposed
466 heterogeneous cluster has four different types of nodes. Each node in cluster
467 has different characteristics such as the maximum frequency speed, the number of
468 available frequencies and dynamic and static powers values, see table
469 (\ref{table:platform}). These different types of processing nodes simulate some
470 real Intel processors. The maximum number of nodes that supported by the cluster
471 is 144 nodes according to characteristics of some MPI programs of the NAS
472 benchmarks that used. We are use the same number from each type of nodes when
473 running the MPI programs, for example if we execute the program on 8 node, there
474 are 2 nodes from each type participating in the computing. The dynamic and
475 static power values is different from one type to other. Each node has a dynamic
476 and static power values proportional to their performance/GFlops, for more
477 details see the Intel data sheets in \cite{47}.  Each node has a percentage of
478 80\% for dynamic power and 20\% for static power from the hole power
479 consumption, the same assumption is made in \cite{45,3}. These nodes are
480 connected via an Ethernet network with 1 Gbit/s bandwidth.
481 \begin{table}[htb]
482   \caption{Heterogeneous nodes characteristics}
483   % title of Table
484   \centering
485   \begin{tabular}{|*{7}{l|}}
486     \hline
487     Node     & Similar     & Max        & Min          & Diff.          & Dynamic      & Static \\
488     type     & to          & Freq. GHz  & Freq. GHz    & Freq GHz       & power        & power \\
489     \hline
490     1       & core-i3       & 2.5         & 1.2          & 0.1           & 20~w         &4~w    \\
491             &  2100T        &             &              &               &              &  \\
492     \hline
493     2       & Xeon          & 2.66        & 1.6          & 0.133         & 25~w         &5~w    \\
494             & 7542          &             &              &               &              &  \\
495     \hline
496     3       & core-i5       & 2.9         & 1.2          & 0.1           & 30~w         &6~w    \\
497             & 3470s         &             &              &               &              &  \\
498     \hline
499     4       & core-i7       & 3.4         & 1.6          & 0.133         & 35~w         &7~w    \\
500             & 2600s         &             &              &               &              &  \\
501     \hline
502   \end{tabular}
503   \label{table:platform}
504 \end{table}
505
506  
507 %\subsection{Performance prediction verification}
508
509
510 \subsection{The experimental results of the scaling algorithm}
511 \label{sec.res}
512
513 The proposed algorithm was applied to seven MPI programs of the NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) NPB v3.
514 \cite{44},  which were run with three classes (A, B and C).
515 In this experiments we are focus on running of the class C, the biggest class compared to A and B, on different number of 
516 nodes, from 4 to 128 or 144 nodes according to the type of the MPI program.  Depending on the proposed energy consumption model EQ(\ref{eq:energy}),
517  we are measure the energy consumption for all NAS MPI programs. The dynamic and static power values used under the same assumption used by \cite{45,3}. We used a percentage of 80\% for dynamic power from all power consumption of the CPU and 20\% for static power. The heterogeneous nodes in table (\ref{table:platform}) have different  simulated performance, ranked from the node of type 1 with smaller performance/GFlops to the highest performance/GFlops for node 4. Therefore, the power values used proportionally increased from node 1 to node 4 that with highest performance. Then we used an assumption that the power consumption increases linearly with the performance/GFlops of the processor see \cite{48}.   
518  
519 \begin{table}[htb]
520   \caption{Running NAS benchmarks on 4 nodes }
521   % title of Table
522   \centering
523   \begin{tabular}{|*{7}{l|}}
524     \hline
525     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
526     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
527     \hline
528     CG         &  64.64        & 3560.39        &34.16        &6.72               &27.44       \\
529     \hline 
530     MG         & 18.89         & 1074.87            &35.37            &4.34                   &31.03       \\
531    \hline
532     EP         &79.73          &5521.04         &26.83            &3.04               &23.79      \\
533    \hline
534     LU         &308.65         &21126.00           &34.00             &6.16                   &27.84      \\
535     \hline
536     BT         &360.12         &21505.55           &35.36         &8.49               &26.87     \\
537    \hline
538     SP         &234.24         &13572.16           &35.22         &5.70               &29.52    \\
539    \hline
540     FT         &81.58          &4151.48        &35.58         &0.99                   &34.59    \\
541 \hline 
542   \end{tabular}
543   \label{table:res_4n}
544 \end{table}
545
546 \begin{table}[htb]
547   \caption{Running NAS benchmarks on 8 and 9 nodes }
548   % title of Table
549   \centering
550   \begin{tabular}{|*{7}{l|}}
551     \hline
552     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
553     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
554     \hline
555     CG         &36.11              &3263.49             &31.25        &7.12                    &24.13     \\
556     \hline 
557     MG         &8.99           &953.39          &33.78        &6.41                    &27.37     \\
558    \hline
559     EP         &40.39          &5652.81         &27.04        &0.49                    &26.55     \\
560    \hline
561     LU         &218.79             &36149.77        &28.23        &0.01                    &28.22      \\
562     \hline
563     BT         &166.89         &23207.42            &32.32            &7.89                    &24.43      \\
564    \hline
565     SP         &104.73         &18414.62            &24.73            &2.78                    &21.95      \\
566    \hline
567     FT         &51.10          &4913.26         &31.02        &2.54                    &28.48      \\
568 \hline 
569   \end{tabular}
570   \label{table:res_8n}
571 \end{table}
572
573 \begin{table}[htb]
574   \caption{Running NAS benchmarks on 16 nodes }
575   % title of Table
576   \centering
577   \begin{tabular}{|*{7}{l|}}
578     \hline
579     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
580     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
581     \hline
582     CG         &31.74          &4373.90         &26.29        &9.57                    &16.72          \\
583     \hline 
584     MG         &5.71           &1076.19         &32.49        &6.05                    &26.44         \\
585    \hline
586     EP         &20.11          &5638.49         &26.85        &0.56                    &26.29         \\
587    \hline
588     LU         &144.13         &42529.06            &28.80            &6.56                    &22.24         \\
589     \hline
590     BT         &97.29          &22813.86            &34.95        &5.80                &29.15         \\
591    \hline
592     SP         &66.49          &20821.67            &22.49            &3.82                    &18.67         \\
593    \hline
594     FT             &37.01          &5505.60             &31.59        &6.48                    &25.11         \\
595 \hline 
596   \end{tabular}
597   \label{table:res_16n}
598 \end{table}
599
600 \begin{table}[htb]
601   \caption{Running NAS benchmarks on 32 and 36 nodes }
602   % title of Table
603   \centering
604   \begin{tabular}{|*{7}{l|}}
605     \hline
606     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
607     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
608     \hline
609     CG         &32.35          &6704.21         &16.15        &5.30                    &10.85           \\
610     \hline 
611     MG         &4.30           &1355.58         &28.93        &8.85                    &20.08          \\
612    \hline
613     EP         &9.96           &5519.68         &26.98        &0.02                    &26.96          \\
614    \hline
615     LU         &99.93          &67463.43            &23.60            &2.45                    &21.15          \\
616     \hline
617     BT         &48.61          &23796.97            &34.62            &5.83                    &28.79          \\
618    \hline
619     SP         &46.01          &27007.43            &22.72            &3.45                    &19.27           \\
620    \hline
621     FT             &28.06          &7142.69             &23.09        &2.90                    &20.19           \\
622 \hline 
623   \end{tabular}
624   \label{table:res_32n}
625 \end{table}
626
627 \begin{table}[htb]
628   \caption{Running NAS benchmarks on 64 nodes }
629   % title of Table
630   \centering
631   \begin{tabular}{|*{7}{l|}}
632     \hline
633     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
634     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
635     \hline
636     CG         &46.65          &17521.83            &8.13             &1.68                    &6.45           \\
637     \hline 
638     MG         &3.27           &1534.70         &29.27        &14.35               &14.92          \\
639    \hline
640     EP         &5.05           &5471.1084           &27.12            &3.11                &24.01         \\
641    \hline
642     LU         &73.92          &101339.16           &21.96            &3.67                    &18.29         \\
643     \hline
644     BT         &39.99          &27166.71            &32.02            &12.28               &19.74         \\
645    \hline
646     SP         &52.00          &49099.28            &24.84            &0.03                    &24.81         \\
647    \hline
648     FT         &25.97          &10416.82        &20.15        &4.87                    &15.28         \\
649 \hline 
650   \end{tabular}
651   \label{table:res_64n}
652 \end{table}
653
654
655 \begin{table}[htb]
656   \caption{Running NAS benchmarks on 128 and 144 nodes }
657   % title of Table
658   \centering
659   \begin{tabular}{|*{7}{l|}}
660     \hline
661     Method     & Execution     & Energy         & Energy      & Performance        & Distance     \\
662     name       & time/s        & consumption/J  & saving\%    & degradation\%      &              \\
663     \hline
664     CG         &56.92          &41163.36        &4.00         &1.10                    &2.90          \\
665     \hline 
666     MG         &3.55           &2843.33         &18.77        &10.38               &8.39          \\
667    \hline
668     EP         &2.67           &5669.66         &27.09        &0.03                    &27.06         \\
669    \hline
670     LU         &51.23          &144471.90       &16.67        &2.36                    &14.31         \\
671     \hline
672     BT         &37.96          &44243.82            &23.18            &1.28                    &21.90         \\
673    \hline
674     SP         &64.53          &115409.71           &26.72            &0.05                    &26.67         \\
675    \hline
676     FT         &25.51          &18808.72            &12.85            &2.84                    &10.01         \\
677 \hline 
678   \end{tabular}
679   \label{table:res_128n}
680 \end{table}
681
682 The results of applying the proposed scaling algorithm to NAS benchmarks is demonstrated in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, 
683 \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). These tables show the results for running the NAS benchmarks on different number of nodes. In general the energy saving percent is decreased  when the number of the computing nodes is increased. While the distance is decreased by the same direction. This because when we are run the MPI programs on a big number of nodes the communications is biggest than the computations, so the static energy is increased linearly to these times. The tables also show that performance degradation percent still approximately the same or decreased a little when the number of computing nodes is increased. This  gives good a prove that the proposed algorithm keeping as mush as possible the performance degradation. 
684
685 \begin{figure}
686   \centering
687   \subfloat[Balanced nodes type scenario]{%
688     \includegraphics[width=.23185\textwidth]{fig/avg_eq}\label{fig:avg_eq}}%
689   \quad%
690   \subfloat[Imbalanced nodes type scenario]{%
691     \includegraphics[width=.23185\textwidth]{fig/avg_neq}\label{fig:avg_neq}}
692   \label{fig:avg}
693   \caption{The average of energy and performance for all NAS benchmarks running with difference number of nodes}
694 \end{figure}
695
696 In the NAS benchmarks there are some programs executed on different number of
697 nodes. The benchmarks CG, MG, LU and FT executed on 2 to a power of (1, 2, 4, 8,
698 \dots{}) of nodes. The other benchmarks such as BT and SP executed on 2 to a
699 power of (1, 2, 4, 9, \dots{}) of nodes. We are take the average of energy
700 saving, performance degradation and distances for all results of NAS
701 benchmarks. The average of these three objectives are plotted to the number of
702 nodes as in plots (\ref{fig:avg_eq} and \ref{fig:avg_neq}).  In CG, MG, LU, and
703 FT benchmarks the average of energy saving is decreased when the number of nodes
704 is increased due to the increasing in the communication times as mentioned
705 before. Thus, the average of distances (our objective function) is decreased
706 linearly with energy saving while keeping the average of performance degradation
707 the same. In BT and SP benchmarks, the average of energy saving is not decreased
708 significantly compare to other benchmarks when the number of nodes is
709 increased. Nevertheless, the average of performance degradation approximately
710 still the same ratio. This difference is depends on the characteristics of the
711 benchmarks such as the computation to communication ratio that has.
712
713 \subsection{The results for different powers scenarios}
714
715 The results of the previous section are obtained using a percentage of 80\% for
716 dynamic power and 20\% for static power of total power consumption. In this
717 section we are change these ratio by using two others scenarios. Because is
718 interested to measure the ability of the proposed algorithm to changes it
719 behavior when these power ratios are changed. In fact, we are use two different
720 scenarios for dynamic and static power ratios in addition to the previous
721 scenario in section (\ref{sec.res}). Therefore, we have three different
722 scenarios for three different dynamic and static power ratios refer to as:
723 70\%-20\%, 80\%-20\% and 90\%-10\% scenario. The results of these scenarios
724 running NAS benchmarks class C on 8 or 9 nodes are place in the tables
725 (\ref{table:res_s1} and \ref{table:res_s2}).
726
727  \begin{table}[htb]
728   \caption{The results of 70\%-30\% powers scenario}
729   % title of Table
730   \centering
731   \begin{tabular}{|*{6}{l|}}
732     \hline
733     Method     & Energy          & Energy      & Performance        & Distance     \\
734     name       & consumption/J   & saving\%    & degradation\%      &              \\
735     \hline
736     CG         &4144.21          &22.42        &7.72                &14.70         \\
737     \hline 
738     MG         &1133.23          &24.50        &5.34                &19.16          \\
739    \hline
740     EP         &6170.30         &16.19         &0.02                &16.17          \\
741    \hline
742     LU         &39477.28        &20.43         &0.07                &20.36          \\
743     \hline
744     BT         &26169.55            &25.34             &6.62                &18.71          \\
745    \hline
746     SP         &19620.09            &19.32             &3.66                &15.66          \\
747    \hline
748     FT         &6094.07         &23.17         &0.36                &22.81          \\
749 \hline 
750   \end{tabular}
751   \label{table:res_s1}
752 \end{table}
753
754
755
756 \begin{table}[htb]
757   \caption{The results of 90\%-10\% powers scenario}
758   % title of Table
759   \centering
760   \begin{tabular}{|*{6}{l|}}
761     \hline
762     Method     & Energy          & Energy      & Performance        & Distance     \\
763     name       & consumption/J   & saving\%    & degradation\%      &              \\
764     \hline
765     CG         &2812.38          &36.36        &6.80                &29.56         \\
766     \hline 
767     MG         &825.427          &38.35        &6.41                &31.94         \\
768    \hline
769     EP         &5281.62          &35.02        &2.68                &32.34         \\
770    \hline
771     LU         &31611.28             &39.15        &3.51                    &35.64        \\
772     \hline
773     BT         &21296.46             &36.70            &6.60                &30.10       \\
774    \hline
775     SP         &15183.42             &35.19            &11.76               &23.43        \\
776    \hline
777     FT         &3856.54          &40.80        &5.67                &35.13        \\
778 \hline 
779   \end{tabular}
780   \label{table:res_s2}
781 \end{table}
782
783
784 \begin{figure}
785   \centering
786   \subfloat[Comparison the average of the results on 8 nodes]{%
787     \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
788   \quad%
789   \subfloat[Comparison the selected frequency scaling factors for 8 nodes]{%
790     \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
791   \label{fig:comp}
792   \caption{The comparison of the three power scenarios}
793 \end{figure}
794
795 To compare the results of these three powers scenarios, we are take the average of the performance degradation, the energy saving and the distances for all NAS benchmarks running on 8 or 9 nodes of class C, as in figure (\ref{fig:sen_comp}). Thus, according to the average of the results, the energy saving ratio is increased when using the a higher percentage for dynamic power (e.g. 90\%-10\% scenario). While the average of energy saving is decreased in 70\%-30\% scenario. 
796 Because the static energy consumption is increase. Moreover, the average of distances is more related to energy saving changes. The average of the performance degradation is decreased when using a higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\% scenario). The raison behind these relations, that the proposed algorithm optimize both energy consumption and performance in the same time. Therefore, when using a higher ratio for dynamic power the algorithm selecting bigger frequency scaling factors values, more energy saving versus more performance degradation, for example see the figure (\ref{fig:scales_comp}). The inverse happen when using a higher ratio for  static  power, the algorithm proportionally  selects a smaller scaling values, less energy saving versus less performance degradation. This is because the  
797 algorithm also keeps as much as possible the static energy consumption that is always related to execution time. 
798
799 \subsection{The verifications of the proposed method}
800 \label{sec.verif}
801 The precision of the proposed algorithm mainly depends on the execution time prediction model and the energy model. The energy model is significantly depends on the execution time model EQ(\ref{eq:perf}), that the energy static related linearly. So, we are compare the predicted execution time with the real execution time (Simgrid time)  values that gathered  offline for the NAS benchmarks class B executed on 8 or 9 nodes. The execution time model can predicts 
802 the real execution time by maximum normalized error 0.03 of all NAS benchmarks. The second verification that we are make is for the scaling algorithm to prove its ability to selects the best set of frequency scaling factors. Therefore, we are expand the algorithm to test at each iteration the frequency scaling factor of the slowest node with the all scaling factors available of the other nodes. This version of the algorithm is applied to different NAS benchmarks classes with different number of nodes. The results from the two algorithms is identical. While the proposed algorithm is runs faster, 10 times faster on average than the expanded algorithm.
803
804 \section{Conclusion}
805 \label{sec.concl}
806
807
808 \section*{Acknowledgment}
809
810
811 % trigger a \newpage just before the given reference
812 % number - used to balance the columns on the last page
813 % adjust value as needed - may need to be readjusted if
814 % the document is modified later
815 %\IEEEtriggeratref{15}
816
817 \bibliographystyle{IEEEtran}
818 \bibliography{IEEEabrv,my_reference}
819 \end{document}
820
821 %%% Local Variables:
822 %%% mode: latex
823 %%% TeX-master: t
824 %%% fill-column: 80
825 %%% ispell-local-dictionary: "american"
826 %%% End:
827
828 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
829 % LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
830 % LocalWords:  de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
831 % LocalWords:  Scp Fmax Fdiff SimGrid GFlops Xeon EP BT