]> AND Private Git Repository - mpi-energy2.git/blob - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections
[mpi-energy2.git] / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{algorithm}
9 \usepackage{subfig}
10 \usepackage{amsmath}
11
12 \usepackage{url}
13 \DeclareUrlCommand\email{\urlstyle{same}}
14
15 \usepackage[autolanguage,np]{numprint}
16 \AtBeginDocument{%
17   \renewcommand*\npunitcommand[1]{\text{#1}}
18   \npthousandthpartsep{}}
19
20 \usepackage{xspace}
21 \usepackage[textsize=footnotesize]{todonotes}
22 \newcommand{\AG}[2][inline]{%
23   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
24 \newcommand{\JC}[2][inline]{%
25   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
26
27 \newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
28
29 \newcommand{\Dist}{\textit{Dist}}
30 \newcommand{\Eind}{\Xsub{E}{ind}}
31 \newcommand{\Enorm}{\Xsub{E}{Norm}}
32 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
33 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
34 \newcommand{\Fdiff}{\Xsub{F}{diff}}
35 \newcommand{\Fmax}{\Xsub{F}{max}}
36 \newcommand{\Fnew}{\Xsub{F}{new}}
37 \newcommand{\Ileak}{\Xsub{I}{leak}}
38 \newcommand{\Kdesign}{\Xsub{K}{design}}
39 \newcommand{\MaxDist}{\textit{Max Dist}}
40 \newcommand{\Ntrans}{\Xsub{N}{trans}}
41 \newcommand{\Pdyn}{\Xsub{P}{dyn}}
42 \newcommand{\PnormInv}{\Xsub{P}{NormInv}}
43 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
44 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
45 \newcommand{\Pstates}{\Xsub{P}{states}}
46 \newcommand{\Pstatic}{\Xsub{P}{static}}
47 \newcommand{\Sopt}{\Xsub{S}{opt}}
48 \newcommand{\Tcomp}{\Xsub{T}{comp}}
49 \newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
50 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
51 \newcommand{\Tmax}{\Xsub{T}{max}}
52 \newcommand{\Tnew}{\Xsub{T}{New}}
53 \newcommand{\Told}{\Xsub{T}{Old}} 
54 \begin{document} 
55
56 \title{Energy Consumption Reduction in heterogeneous architecture using DVFS}
57
58 \author{%
59   \IEEEauthorblockN{%
60     Jean-Claude Charr,
61     Raphaël Couturier,
62     Ahmed Fanfakh and
63     Arnaud Giersch
64   }
65   \IEEEauthorblockA{%
66     FEMTO-ST Institute\\
67     University of Franche-Comté\\
68     IUT de Belfort-Montbéliard,
69     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
70     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
71     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
72     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
73    }
74   }
75
76 \maketitle
77
78 \begin{abstract}
79   
80 \end{abstract}
81
82 \section{Introduction}
83 \label{sec.intro}
84
85
86 \section{Related works}
87 \label{sec.relwork}
88
89
90
91
92 \section{The performance and energy consumption measurements on heterogeneous architecture}
93 \label{sec.exe}
94
95 % \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
96 %   can be deleted if we need space, we can just say we are interested in this
97 %   paper in homogeneous clusters}
98
99 \subsection{The execution time of message passing distributed iterative applications on a heterogeneous platform}
100
101 In this paper, we are interested in reducing the energy consumption of message
102 passing distributed iterative synchronous applications running over
103 heterogeneous platforms. We define a heterogeneous platform as a collection of
104 heterogeneous computing nodes interconnected via a high speed homogeneous
105 network. Therefore, each node has different characteristics such as computing
106 power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
107 have the same network bandwidth and latency.
108
109
110 \begin{figure}[t]
111   \centering
112     \includegraphics[scale=0.6]{fig/commtasks}
113   \caption{Parallel tasks on a heterogeneous platform}
114   \label{fig:heter}
115 \end{figure}
116
117  The  overall execution time  of a distributed iterative synchronous application over a heterogeneous platform  consists of the sum of the computation time and the communication time for every iteration on a node. However, due to the heterogeneous computation power of the computing nodes, slack times might occur when fast nodes have to
118  wait, during synchronous communications, for  the slower nodes to finish  their computations (see Figure~(\ref{fig:heter})). 
119  Therefore,  the overall execution time  of the program is the execution time of the slowest
120  task which have the highest computation time and no slack time.
121  
122 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in modern processors, that reduces the energy consumption
123 of a CPU by scaling down its voltage and frequency.  Since DVFS lowers the frequency of a CPU and consequently its computing power, the execution time of a program running over that scaled down processor might increase, especially if the program is compute bound.  The frequency reduction process can be  expressed by the scaling factor S which is the ratio between  the maximum and the new frequency of a CPU as in EQ (\ref{eq:s}).
124 \begin{equation}
125   \label{eq:s}
126  S = \frac{F_\textit{max}}{F_\textit{new}}
127 \end{equation}
128  The execution time of a compute bound sequential program is linearly proportional to the frequency scaling factor $S$. 
129  On the other hand,  message passing distributed applications consist of two parts: computation and communication. The execution time of the computation part is linearly proportional to the frequency scaling factor $S$ but  the communication time is not affected by the scaling factor because  the processors involved remain idle during the  communications~\cite{17}. The communication time for a task is the summation of periods of time that begin with an MPI call for sending or receiving   a message till the message is synchronously sent or received.
130
131 Since in a heterogeneous platform, each node has different characteristics,
132 especially different frequency gears, when applying DVFS operations on these
133 nodes, they may get different scaling factors represented by a scaling vector:
134 $(S_1, S_2,\dots, S_N)$ where $S_i$ is the scaling factor of processor $i$. To
135 be able to predict the execution time of message passing synchronous iterative
136 applications running over a heterogeneous platform, for different vectors of
137 scaling factors, the communication time and the computation time for all the
138 tasks must be measured during the first iteration before applying any DVFS
139 operation. Then the execution time for one iteration of the application with any
140 vector of scaling factors can be predicted using EQ (\ref{eq:perf}).
141 \begin{equation}
142   \label{eq:perf}
143  \textit  T_\textit{new} = 
144  \max_{i=1,2,\dots,N} ({TcpOld_{i}} \cdot S_{i}) +  MinTcm
145 \end{equation}
146 where $TcpOld_i$ is the computation time  of processor $i$ during the first iteration and $MinTcm$ is the communication time of the slowest processor from the first iteration.  The model computes the maximum computation time 
147  with scaling factor from each node  added to the communication time of the slowest node, it means  only the
148  communication time without any slack time. Therefore, we can consider the execution time of the iterative application is equal to the execution time of one iteration as in EQ(\ref{eq:perf}) multiplied by the number of iterations of that application.
149
150 This prediction model is based on our model for predicting the execution time of message passing distributed applications for homogeneous architectures~\cite{45}. The execution time prediction model is used in our method for optimizing both energy consumption and performance of iterative methods, which is presented in the following sections.
151
152
153 \subsection{Energy model for heterogeneous platform}
154 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
155 two power metrics: the static and the dynamic power.  While the first one is
156 consumed as long as the computing unit is turned on, the latter is only consumed during
157 computation times.  The dynamic power $P_{d}$ is related to the switching
158 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
159 operational frequency $F$, as shown in EQ(\ref{eq:pd}).
160 \begin{equation}
161   \label{eq:pd}
162   P_\textit{d} = \alpha \cdot C_L \cdot V^2 \cdot F
163 \end{equation}
164 The static power $P_{s}$ captures the leakage power as follows:
165 \begin{equation}
166   \label{eq:ps}
167    P_\textit{s}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
168 \end{equation}
169 where V is the supply voltage, $N_{trans}$ is the number of transistors,
170 $K_{design}$ is a design dependent parameter and $I_{leak}$ is a
171 technology-dependent parameter.  The energy consumed by an individual processor
172 to execute a given program can be computed as:
173 \begin{equation}
174   \label{eq:eind}
175    E_\textit{ind} =  P_\textit{d} \cdot Tcp + P_\textit{s} \cdot T
176 \end{equation}
177 where $T$ is the execution time of the program, $T_{cp}$ is the computation
178 time and $T_{cp} \leq T$.  $T_{cp}$ may be equal to $T$ if there is no
179 communication and no slack time.
180
181 The main objective of DVFS operation is to
182 reduce the overall energy consumption~\cite{37}.  The operational frequency $F$
183 depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
184 constant $\beta$.  This equation is used to study the change of the dynamic
185 voltage with respect to various frequency values in~\cite{3}.  The reduction
186 process of the frequency can be expressed by the scaling factor $S$ which is the
187 ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
188 The CPU governors are power schemes supplied by the operating
189 system's kernel to lower a core's frequency. we can calculate the new frequency 
190 $F_{new}$ from EQ(\ref{eq:s}) as follow:
191 \begin{equation}
192   \label{eq:fnew}
193    F_\textit{new} = S^{-1} \cdot F_\textit{max}
194 \end{equation}
195 Replacing $F_{new}$ in EQ(\ref{eq:pd}) as in EQ(\ref{eq:fnew}) gives the following equation for dynamic 
196 power consumption:
197 \begin{multline}
198   \label{eq:pdnew}
199    {P}_\textit{dNew} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
200    {} = \alpha \cdot C_L \cdot V^2 \cdot F_{max} \cdot S^{-3} = P_{dOld} \cdot S^{-3}
201 \end{multline}
202 where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the new frequency and the maximum frequency respectively.
203
204 According to EQ(\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
205 reducing the frequency by a factor of $S$~\cite{3}. Since the FLOPS of a CPU is proportional to the frequency of a CPU, the computation time is increased proportionally to $S$.  The new dynamic energy is the  dynamic power multiplied by the new time of computation and is given by the following equation:
206 \begin{equation}
207   \label{eq:Edyn}
208    E_\textit{dNew} = P_{dOld} \cdot S^{-3} \cdot (Tcp \cdot S)= S^{-2}\cdot P_{dOld} \cdot  Tcp 
209 \end{equation}
210 The static power is related to the power leakage of the CPU and is consumed during computation and even when idle. As in~\cite{3,46}, we assume that the static power of a processor is constant during idle and computation periods, and for all its available frequencies. 
211 The static energy is the static power multiplied by the execution time of the program. According to the execution time model in EQ(\ref{eq:perf}), 
212 the execution time of the program is the summation of the computation and the communication times. The computation time is linearly related  
213 to the frequency scaling factor, while this scaling factor does not affect the communication time. The static energy 
214 of a processor after scaling its frequency is computed as follows: 
215 \begin{equation}
216   \label{eq:Estatic}
217  E_\textit{s} = P_\textit{s} \cdot (Tcp \cdot S  + Tcm)
218 \end{equation}
219
220 In the considered heterogeneous platform, each processor $i$ might have different dynamic and static powers, noted as $Pd_{i}$ and $Ps_{i}$ respectively. Therefore, even if the distributed message passing iterative application is load balanced, the computation time of each CPU $i$ noted $Tcp_{i}$ might be different and different frequency  scaling factors might be computed in order to decrease the overall energy consumption of the application and reduce the slack times. The communication time of a processor $i$ is noted as $Tcm_{i}$ and could contain slack times if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do not have equal communication times. While the dynamic energy is computed according to the frequency scaling factor and the dynamic power of each node as in EQ(\ref{eq:Edyn}), the static energy is computed as the sum of the execution time of each processor multiplied by its static power. The overall energy consumption of a message passing  distributed application executed over a heterogeneous platform during one iteration is the summation of all dynamic and static energies for each  processor.  It is computed as follows:
221 \begin{multline}
222   \label{eq:energy}
223  E = \sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_{i} \cdot  Tcp_i)} + {} \\
224  \sum_{i=1}^{N} (Ps_{i} \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) +
225   {MinTcm))}
226  \end{multline}
227
228 Reducing the frequencies of the processors according to the vector of
229 scaling factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the
230 application and thus, increase the static energy because the execution time is
231 increased~\cite{36}. We can measure the overall energy consumption for the iterative 
232 application by measuring  the energy consumption for one iteration as in EQ(\ref{eq:energy}) multiplied by 
233 the number of iterations of that application.
234
235
236 \section{Optimization of both energy consumption and performance}
237 \label{sec.compet}
238
239 Using the lowest frequency for each processor does not necessarily gives the most energy efficient execution of an application. Indeed, even though the dynamic power is reduced while scaling down the frequency of a processor, its computation power is proportionally decreased and thus the execution time might be drastically increased during which dynamic and static powers are being consumed. Therefore,  it might cancel any gains achieved by scaling down the frequency of all nodes to the minimum  and the overall energy consumption of the application might not be the optimal one. It is not trivial to select the appropriate frequency scaling factor for each processor while considering the characteristics of each processor (computation power, range of frequencies, dynamic and static powers) and the task executed (computation/communication ratio) in order to reduce the overall energy consumption and not significantly increase the execution time. In our previous work~\cite{45}, we  proposed a method that selects the optimal 
240 frequency scaling factor for a homogeneous cluster executing a message passing iterative synchronous application while giving the best trade-off
241  between the energy consumption and the performance for such applications. In this work we are interested in 
242 heterogeneous clusters as described above. Due to the heterogeneity of the processors, not one but a  vector of scaling factors should be selected and it must  give the best trade-off between energy consumption and performance. 
243
244 The relation between the energy consumption and the execution
245 time for an application is complex and nonlinear, Thus, unlike the relation between the execution time 
246 and the scaling factor, the relation of the energy with the frequency scaling
247 factors is nonlinear, for more details refer to~\cite{17}.  Moreover, they are
248 not measured using the same metric.  To solve this problem, we normalize the
249 execution time by computing the ratio between the new execution time (after scaling down the frequencies of some processors) and the initial one (with maximum frequency for all nodes,) as follows:
250 \begin{multline}
251   \label{eq:pnorm}
252   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
253        {} = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +MinTcm}
254            {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
255 \end{multline}
256
257
258 In the same way, we normalize the energy by computing the ratio between the consumed energy while scaling down the frequency and the consumed energy with maximum frequency for all nodes:
259 \begin{multline}
260   \label{eq:enorm}
261   E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
262   {} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +
263  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
264  \sum_{i=1}^{N} {(Ps_i@+eYd162 \cdot T_{Old})}}
265 \end{multline} 
266 Where $T_{New}$ and $T_{Old}$ are computed as in EQ(\ref{eq:pnorm}).
267
268  While the main 
269 goal is to optimize the energy and execution time at the same time, the normalized energy and execution time curves are not in the same direction. According 
270 to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the vector  of frequency
271 scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy and the execution
272 time simultaneously.  But the main objective is to produce maximum energy
273 reduction with minimum execution time reduction.  
274
275 Many researchers used different strategies to solve this nonlinear problem for example
276 in~\cite{19,42}, their methods add big overheads to the algorithm to select the
277 suitable frequency.  In this paper we  present a method to find the optimal
278 set of frequency scaling factors to simultaneously optimize both energy and execution time
279  without adding a big overhead. \textbf{put the last two phrases in the related work section}
280  
281   
282 Our solution for this problem is to make the optimization process for energy and execution time follow the same
283 direction.  Therefore, we inverse the equation of the normalized execution time which gives 
284 the normalized performance equation, as follows:
285 \begin{multline}
286   \label{eq:pnorm_inv}
287   P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
288           = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
289             { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm} 
290 \end{multline}
291
292
293 \begin{figure}
294   \centering
295   \subfloat[Homogeneous platform]{%
296     \includegraphics[width=.22\textwidth]{fig/homo}\label{fig:r1}}%
297   \qquad%
298   \subfloat[Heterogeneous platform]{%
299     \includegraphics[width=.22\textwidth]{fig/heter}\label{fig:r2}}
300   \label{fig:rel}
301   \caption{The energy and performance relation}
302 \end{figure}
303
304 Then, we can model our objective function as finding the maximum distance
305 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
306 curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
307 represents the minimum energy consumption with minimum execution time (maximum 
308 performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}) .  Then our objective
309 function has the following form:
310 \begin{equation}
311   \label{eq:max}
312   Max Dist = 
313   \max_{i=1,\dots F, j=1,\dots,N}
314       (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
315        \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
316 \end{equation}
317 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each nodes. 
318 Then we can select the optimal set of scaling factors that satisfies EQ~(\ref{eq:max}).  Our objective function can
319 work with any energy model or any power values for each node (static and dynamic powers).
320 However, the most energy reduction gain can be achieved when the energy curve has a convex form as shown in~\cite{15,3,19}.
321
322 \section{The scaling factors selection algorithm for heterogeneous platforms }
323 \label{sec.optim}
324
325 In this section we  propose algorithm~(\ref{HSA}) which selects the frequency scaling factors vector that gives the best trade-off between minimizing the energy consumption  and maximizing the performance of a message passing synchronous iterative application executed on a heterogeneous platform.  
326 It works online during the execution time of the iterative message passing program.  It uses information gathered during the first iteration such as the computation time and the communication time in one iteration for each node. The algorithm is executed  after the first iteration and returns a vector of optimal frequency scaling factors   that satisfies the objective function EQ(\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs according to the computed scaling factors.  This algorithm is called just once during the execution of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called in the iterative MPI program.
327
328
329 The nodes in a heterogeneous platform have different computing powers, thus while executing message passing iterative synchronous applications, fast nodes have to wait for the slower ones to finish their computations before being able to synchronously communicate with them as in figure (\ref{fig:heter}). These periods are called idle or slack times.
330 Our algorithm takes into account this problem and tries to reduce these slack times when selecting the frequency scaling factors vector. At first, it selects initial frequency scaling factors that increase the execution times of fast nodes and  minimize the  differences between  the  computation times of fast and slow nodes. The value of the initial frequency scaling factor  for each node is inversely proportional to its computation time that was gathered from the first iteration. These initial frequency scaling factors are computed as   a ratio between the computation time of the slowest node and the computation time of the node $i$ as follows:
331 \begin{equation}
332   \label{eq:Scp}
333  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
334 \end{equation}
335 Using the initial  frequency scaling factors computed in EQ(\ref{eq:Scp}), the algorithm computes the initial frequencies for all nodes as a ratio between the 
336 maximum frequency of node $i$  and the computation scaling factor $Scp_i$ as follows:
337 \begin{equation}
338   \label{eq:Fint}
339  F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
340 \end{equation}
341 If the computed initial frequency for a node is not available in the gears of that node, the computed initial frequency is replaced by the nearest available frequency.
342 In  figure (\ref{fig:st_freq}), the nodes are  sorted by their computing powers in ascending order and the frequencies of the faster nodes are scaled down according to the computed initial frequency scaling factors. The resulting new frequencies are colored in blue in  figure (\ref{fig:st_freq}). This set of frequencies can be considered as a higher bound for the search space of the optimal vector of frequencies because selecting frequency scaling factors higher than the higher bound will not improve the performance of the application and it will increase its overall energy consumption. Therefore the algorithm that selects the frequency scaling factors starts the search method from these initial frequencies and takes a downward search direction toward lower frequencies. The algorithm iterates on all left frequencies, from the higher bound until all nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of  all other nodes by one gear.
343 The new overall energy consumption and execution time are computed according to the new scaling factors. The optimal set of frequency scaling factors is the set that gives the highest distance according to  the objective function EQ(\ref{eq:max}).
344
345 The plots~(\ref{fig:r1} and \ref{fig:r2}) illustrate the normalized performance and consumed energy for an application running on a homogeneous platform and a heterogeneous platform respectively while increasing the scaling factors. It can be noticed that in a homogeneous platform the search for the optimal scaling factor should be started from the maximum frequency because the performance and the consumed energy is decreased since  the beginning of the plot. On the other hand, in  the heterogeneous platform the performance is  maintained at the beginning of the plot even if the frequencies of the faster nodes are decreased until the scaled down nodes have computing powers lower than the slowest node. In other words, until they reach the higher bound. It can also be noticed that the higher the difference between the faster nodes and the slower nodes is, the bigger the maximum distance between the energy curve and the performance curve is while varying the scaling factors which results in bigger energy savings. 
346 \begin{figure}[t]
347   \centering
348     \includegraphics[scale=0.5]{fig/start_freq}
349   \caption{Selecting the initial frequencies}
350   \label{fig:st_freq}
351 \end{figure}
352
353
354
355
356
357 \begin{algorithm}
358   \begin{algorithmic}[1]
359     % \footnotesize
360     \Require ~
361     \begin{description}
362     \item[$Tcp_i$] array of all computation times for all nodes during one iteration and with highest frequency.
363     \item[$Tcm_i$] array of all communication times for all nodes during one iteration and with highest frequency.
364     \item[$Fmax_i$] array of the maximum frequencies for all nodes.
365     \item[$Pd_i$] array of the dynamic powers for all nodes.
366     \item[$Ps_i$] array of the static powers for all nodes.
367     \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
368     \end{description}
369     \Ensure $Sopt_1,Sopt_2 \dots, Sopt_N$ is a vector of optimal scaling factors
370
371     \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
372     \State $F_{i} \gets  \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
373     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
374     \If{(not the first frequency)}
375           \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
376     \EndIf 
377     \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
378     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
379     \State $Dist \gets 0$
380     \State  $Sopt_{i} \gets 1,~i=1,\dots,N. $
381     \While {(all nodes not reach their  minimum  frequency)}
382         \If{(not the last freq. \textbf{and} not the slowest node)}
383         \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
384         \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,\dots,N.$
385         \EndIf
386        \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm $
387        \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} + $  \hspace*{43 mm} 
388                $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
389        \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
390        \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
391       \If{$(\Pnorm - \Enorm > \Dist)$}
392         \State $Sopt_{i} \gets S_{i},~i=1,\dots,N. $
393         \State $\Dist \gets \Pnorm - \Enorm$
394       \EndIf
395     \EndWhile
396     \State  Return $Sopt_1,Sopt_2,\dots,Sopt_N$
397   \end{algorithmic}
398   \caption{Heterogeneous scaling algorithm}
399   \label{HSA}
400 \end{algorithm}
401
402 \begin{algorithm}
403   \begin{algorithmic}[1]
404     % \footnotesize
405     \For {$k=1$ to \textit{some iterations}}
406       \State Computations section.
407       \State Communications section.
408       \If {$(k=1)$}
409         \State Gather all times of computation and\newline\hspace*{3em}%
410                communication from each node.
411         \State Call algorithm from Figure~\ref{HSA} with these times.
412         \State Compute the new frequencies from the\newline\hspace*{3em}%
413                returned optimal scaling factors.
414         \State Set the new frequencies to nodes.
415       \EndIf
416     \EndFor
417   \end{algorithmic}
418   \caption{DVFS algorithm}
419   \label{dvfs}
420 \end{algorithm}
421
422 \section{Experimental results}
423 \label{sec.expe}
424 To evaluate the efficiency and the overall energy consumption reduction of algorithm~\ref{HSA}), it was applied to the NAS parallel benchmarks NPB v3.3 
425 \cite{44}. The experiments were executed on the simulator SimGrid/SMPI
426 v3.10~\cite{casanova+giersch+legrand+al.2014.versatile} which offers easy tools to create a heterogeneous platform and run message passing applications over it. The heterogeneous platform that was used in the experiments, had one core per node because just one process was executed per node. The heterogeneous platform  was composed of four types of nodes. Each type of nodes had different characteristics such as the maximum CPU frequency, the number of
427 available frequencies and the computational power, see table
428 (\ref{table:platform}). The characteristics of these different types of  nodes are inspired   from the specifications of real Intel processors. The heterogeneous platform had up to 144 nodes and had nodes from the four types in equal proportions, for example if  a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the constructors of CPUs do not specify the dynamic and the static power of their CPUs, for each type of node they were chosen proportionally to  its computing power (FLOPS).  In the initial heterogeneous platform,  while computing with highest frequency, each node  consumed power proportional to its computing power which 80\% of it was dynamic power and the rest was 20\% was static power, the same assumption  was made in \cite{45,3}. Finally, These nodes were connected via an ethernet network with 1 Gbit/s bandwidth.
429
430
431 \begin{table}[htb]
432   \caption{Heterogeneous nodes characteristics}
433   % title of Table
434   \centering
435   \begin{tabular}{|*{7}{l|}}
436     \hline
437     Node          &Simulated  & Max      & Min          & Diff.          & Dynamic      & Static \\
438     type          &GFLOPS     & Freq.    & Freq.        & Freq.          & power        & power \\
439                   &           & GHz      & GHz          &GHz             &              &       \\
440     \hline
441     1             &40         & 2.5      & 1.2          & 0.1            & 20~w         &4~w    \\
442                   &           &          &              &                &              &  \\
443     \hline
444     2             &50         & 2.66     & 1.6          & 0.133          & 25~w         &5~w    \\
445                   &           &          &              &                &              &  \\
446     \hline
447     3             &60         & 2.9      & 1.2          & 0.1            & 30~w         &6~w    \\
448                   &           &          &              &                &              &  \\
449     \hline
450     4             &70         & 3.4      & 1.6          & 0.133          & 35~w         &7~w    \\
451                   &           &          &              &                &              &  \\
452     \hline
453   \end{tabular}
454   \label{table:platform}
455 \end{table}
456
457  
458 %\subsection{Performance prediction verification}
459
460
461 \subsection{The experimental results of the scaling algorithm}
462 \label{sec.res}
463
464
465 The proposed algorithm was applied to the seven parallel NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) and the benchmarks were executed with the three classes: A,B and C. However, due to the lack of space in this paper, only the results of the biggest class, C, are presented while being run on different number of nodes, ranging  from 4 to 128 or 144 nodes depending on the benchmark being executed. Indeed, the benchmarks CG, MG, LU, EP and FT should be executed on $1, 2, 4, 8, 16, 32, 64, 128$ nodes. The other benchmarks such as BT and SP should be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
466
467  
468  
469 \begin{table}[htb]
470   \caption{Running NAS benchmarks on 4 nodes }
471   % title of Table
472   \centering
473   \begin{tabular}{|*{7}{l|}}
474     \hline
475     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
476     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
477     \hline
478     CG         &  64.64        & 3560.39        &34.16        &6.72               &27.44       \\
479     \hline 
480     MG         & 18.89         & 1074.87            &35.37            &4.34                   &31.03       \\
481    \hline
482     EP         &79.73          &5521.04         &26.83            &3.04               &23.79      \\
483    \hline
484     LU         &308.65         &21126.00           &34.00             &6.16                   &27.84      \\
485     \hline
486     BT         &360.12         &21505.55           &35.36         &8.49               &26.87     \\
487    \hline
488     SP         &234.24         &13572.16           &35.22         &5.70               &29.52    \\
489    \hline
490     FT         &81.58          &4151.48        &35.58         &0.99                   &34.59    \\
491 \hline 
492   \end{tabular}
493   \label{table:res_4n}
494 \end{table}
495
496 \begin{table}[htb]
497   \caption{Running NAS benchmarks on 8 and 9 nodes }
498   % title of Table
499   \centering
500   \begin{tabular}{|*{7}{l|}}
501     \hline
502     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
503     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
504     \hline
505     CG         &36.11              &3263.49             &31.25        &7.12                    &24.13     \\
506     \hline 
507     MG         &8.99           &953.39          &33.78        &6.41                    &27.37     \\
508    \hline
509     EP         &40.39          &5652.81         &27.04        &0.49                    &26.55     \\
510    \hline
511     LU         &218.79             &36149.77        &28.23        &0.01                    &28.22      \\
512     \hline
513     BT         &166.89         &23207.42            &32.32            &7.89                    &24.43      \\
514    \hline
515     SP         &104.73         &18414.62            &24.73            &2.78                    &21.95      \\
516    \hline
517     FT         &51.10          &4913.26         &31.02        &2.54                    &28.48      \\
518 \hline 
519   \end{tabular}
520   \label{table:res_8n}
521 \end{table}
522
523 \begin{table}[htb]
524   \caption{Running NAS benchmarks on 16 nodes }
525   % title of Table
526   \centering
527   \begin{tabular}{|*{7}{l|}}
528     \hline
529     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
530     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
531     \hline
532     CG         &31.74          &4373.90         &26.29        &9.57                    &16.72          \\
533     \hline 
534     MG         &5.71           &1076.19         &32.49        &6.05                    &26.44         \\
535    \hline
536     EP         &20.11          &5638.49         &26.85        &0.56                    &26.29         \\
537    \hline
538     LU         &144.13         &42529.06            &28.80            &6.56                    &22.24         \\
539     \hline
540     BT         &97.29          &22813.86            &34.95        &5.80                &29.15         \\
541    \hline
542     SP         &66.49          &20821.67            &22.49            &3.82                    &18.67         \\
543    \hline
544     FT             &37.01          &5505.60             &31.59        &6.48                    &25.11         \\
545 \hline 
546   \end{tabular}
547   \label{table:res_16n}
548 \end{table}
549
550 \begin{table}[htb]
551   \caption{Running NAS benchmarks on 32 and 36 nodes }
552   % title of Table
553   \centering
554   \begin{tabular}{|*{7}{l|}}
555     \hline
556     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
557     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
558     \hline
559     CG         &32.35          &6704.21         &16.15        &5.30                    &10.85           \\
560     \hline 
561     MG         &4.30           &1355.58         &28.93        &8.85                    &20.08          \\
562    \hline
563     EP         &9.96           &5519.68         &26.98        &0.02                    &26.96          \\
564    \hline
565     LU         &99.93          &67463.43            &23.60            &2.45                    &21.15          \\
566     \hline
567     BT         &48.61          &23796.97            &34.62            &5.83                    &28.79          \\
568    \hline
569     SP         &46.01          &27007.43            &22.72            &3.45                    &19.27           \\
570    \hline
571     FT             &28.06          &7142.69             &23.09        &2.90                    &20.19           \\
572 \hline 
573   \end{tabular}
574   \label{table:res_32n}
575 \end{table}
576
577 \begin{table}[htb]
578   \caption{Running NAS benchmarks on 64 nodes }
579   % title of Table
580   \centering
581   \begin{tabular}{|*{7}{l|}}
582     \hline
583     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
584     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
585     \hline
586     CG         &46.65          &17521.83            &8.13             &1.68                    &6.45           \\
587     \hline 
588     MG         &3.27           &1534.70         &29.27        &14.35               &14.92          \\
589    \hline
590     EP         &5.05           &5471.1084           &27.12            &3.11                &24.01         \\
591    \hline
592     LU         &73.92          &101339.16           &21.96            &3.67                    &18.29         \\
593     \hline
594     BT         &39.99          &27166.71            &32.02            &12.28               &19.74         \\
595    \hline
596     SP         &52.00          &49099.28            &24.84            &0.03                    &24.81         \\
597    \hline
598     FT         &25.97          &10416.82        &20.15        &4.87                    &15.28         \\
599 \hline 
600   \end{tabular}
601   \label{table:res_64n}
602 \end{table}
603
604
605 \begin{table}[htb]
606   \caption{Running NAS benchmarks on 128 and 144 nodes }
607   % title of Table
608   \centering
609   \begin{tabular}{|*{7}{l|}}
610     \hline
611     Method     & Execution     & Energy         & Energy      & Performance        & Distance     \\
612     name       & time/s        & consumption/J  & saving\%    & degradation\%      &              \\
613     \hline
614     CG         &56.92          &41163.36        &4.00         &1.10                    &2.90          \\
615     \hline 
616     MG         &3.55           &2843.33         &18.77        &10.38               &8.39          \\
617    \hline
618     EP         &2.67           &5669.66         &27.09        &0.03                    &27.06         \\
619    \hline
620     LU         &51.23          &144471.90       &16.67        &2.36                    &14.31         \\
621     \hline
622     BT         &37.96          &44243.82            &23.18            &1.28                    &21.90         \\
623    \hline
624     SP         &64.53          &115409.71           &26.72            &0.05                    &26.67         \\
625    \hline
626     FT         &25.51          &18808.72            &12.85            &2.84                    &10.01         \\
627 \hline 
628   \end{tabular}
629   \label{table:res_128n}
630 \end{table}
631 The overall energy consumption was computed for each instance according to the energy consumption  model EQ(\ref{eq:energy}), with and without applying the algorithm. The execution time was also measured for all these experiments. Then, the energy saving and performance degradation percentages were computed for each instance.  
632 The results are presented in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). All these results are the average values from many experiments for  energy savings and performance degradation.
633
634 The tables  show the experimental results for running the NAS parallel benchmarks on different number of nodes. The experiments show that the algorithm reduce significantly the energy consumption (up to 35\%) and tries to limit the performance degradation. They also show that the  energy saving percentage is decreased  when the number of the computing nodes is increased. This reduction is due to the increase of the communication times compared to the execution times when the benchmarks are run over a high number of nodes. Indeed, the benchmarks with the same class, C, are executed on different number of nodes, so the computation required for each iteration is divided by the number of computing nodes.   On the other hand, more communications are required when increasing the number of nodes so the static energy is increased linearly according to the communication time and the dynamic power is less relevant in the overall energy consumption. Therefore, reducing the frequency with algorithm~\ref{HSA}) have less effect in reducing the overall energy savings. It can also be noticed that for the benchmarks EP and SP that contain little or no communications,  the energy savings are not significantly affected with the high number of nodes. No experiments were conducted using bigger classes such as D, because they require a lot of memory(more than 64GB) when being executed by the simulator on one machine.
635 The maximum distance between the normalized energy curve and the normalized performance for each instance is also shown in the result tables. It is decreased in the same way as the energy saving percentage. The tables also show that the performance degradation percentage is not significantly increased when the number of computing nodes is increased because the computation times are small when compared to the communication times.  
636
637
638  
639 \begin{figure}
640   \centering
641   \subfloat[Energy saving]{%
642     \includegraphics[width=.2315\textwidth]{fig/energy}\label{fig:energy}}%
643   \quad%
644   \subfloat[Performance degradation ]{%
645     \includegraphics[width=.2315\textwidth]{fig/per_deg}\label{fig:per_deg}}
646   \label{fig:avg}
647   \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
648 \end{figure}
649
650  
651   \textbf{ The energy saving and performance degradation of all benchmarks are plotted to the number of
652 nodes as in plots (\ref{fig:energy} and \ref{fig:per_deg}). A shown in the plots, the energy saving percentage of the benchmarks MG, LU, BT and FT is decreased linearly  when the the number of nodes increased. While in EP benchmarks the energy saving percentage is approximately the same percentage when the number of computing nodes is increased, because in this benchmarks there is no communications. In the SP benchmarks the energy saving percentage is decreased when it run on a small number of nodes, while this percentage is increased when it runs on a big number of nodes. The energy saving of the GC benchmarks  is significantly decreased when the number of nodes is increased, because this benchmarks has more communications compared to other benchmarks. The performance degradation percentage of the benchmarks CG, EP, LU and BT is decreased when they run on a big number of nodes. While in MG benchmarks has a higher percentage of performance degradation when it runs on a big number of nodes. The inverse happen in SP benchmarks has smaller performance degradation percentage when it runs on a big number of nodes.} 
653
654
655 \subsection{The results for different power consumption scenarios}
656
657 The results of the previous section were obtained while using processors that consume during computation an overall power which is 80\% composed of  dynamic power and 20\% of static power. In this
658 section, these ratios are changed and two new power scenarios are considered in order to evaluate how the proposed  algorithm adapts itself according to the static and dynamic power values.  The two new power scenarios are the following: 
659 \begin{itemize}
660 \item 70\% dynamic power  and 30\% static power
661 \item 90\% dynamic power  and 10\% static power
662 \end{itemize}
663 The NAS parallel benchmarks were executed again over processors that follow the the new power scenarios. The class C of each benchmark was run over 8 or 9 nodes and the results are presented in  tables (\ref{table:res_s1} and \ref{table:res_s2}). \textbf{These tables show that the energy saving percentage of the 70\%-30\% scenario is less for all benchmarks compared to the energy saving of the 90\%-10\% scenario, because this scenario uses higher percentage of dynamic dynamic power that is quadratically related to scaling factors. While the performance degradation percentage is less in 70\%-30\% scenario  compared to 90\%-10\%  scenario, because the first scenario used higher percentage for static power consumption that is linearly related to scaling factors and thus the execution time. }
664
665 The two new power scenarios are compared to the old one  in figure (\ref{fig:sen_comp}). It shows the average of the performance degradation, the energy saving and the distances for all NAS benchmarks of class C running on 8 or 9 nodes. The comparison shows that  the energy saving ratio is proportional to the dynamic power ratio: it is increased when applying the  90\%-10\% scenario because at maximum frequency the dynamic  energy is the the most relevant in the overall consumed energy and can be reduced by lowering the frequency of some processors. On the other hand, the energy saving is decreased when  the 70\%-30\% scenario is used because the dynamic  energy is less relevant in the overall consumed energy and lowering the frequency do not returns big energy savings.
666 Moreover, the average of the performance degradation is decreased when using a higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\% scenario). Since the proposed algorithm optimizes the energy consumption when using a higher ratio for dynamic power the algorithm selects bigger frequency scaling factors that result in more energy saving but less performance, for example see the figure (\ref{fig:scales_comp}). The opposite happens when using a higher ratio for  static  power, the algorithm proportionally  selects  smaller scaling values which results in less energy saving but less performance degradation. 
667
668
669  \begin{table}[htb]
670   \caption{The results of 70\%-30\% powers scenario}
671   % title of Table
672   \centering
673   \begin{tabular}{|*{6}{l|}}
674     \hline
675     Method     & Energy          & Energy      & Performance        & Distance     \\
676     name       & consumption/J   & saving\%    & degradation\%      &              \\
677     \hline
678     CG         &4144.21          &22.42        &7.72                &14.70         \\
679     \hline 
680     MG         &1133.23          &24.50        &5.34                &19.16          \\
681    \hline
682     EP         &6170.30         &16.19         &0.02                &16.17          \\
683    \hline
684     LU         &39477.28        &20.43         &0.07                &20.36          \\
685     \hline
686     BT         &26169.55            &25.34             &6.62                &18.71          \\
687    \hline
688     SP         &19620.09            &19.32             &3.66                &15.66          \\
689    \hline
690     FT         &6094.07         &23.17         &0.36                &22.81          \\
691 \hline 
692   \end{tabular}
693   \label{table:res_s1}
694 \end{table}
695
696
697
698 \begin{table}[htb]
699   \caption{The results of 90\%-10\% powers scenario}
700   % title of Table
701   \centering
702   \begin{tabular}{|*{6}{l|}}
703     \hline
704     Method     & Energy          & Energy      & Performance        & Distance     \\
705     name       & consumption/J   & saving\%    & degradation\%      &              \\
706     \hline
707     CG         &2812.38          &36.36        &6.80                &29.56         \\
708     \hline 
709     MG         &825.427          &38.35        &6.41                &31.94         \\
710    \hline
711     EP         &5281.62          &35.02        &2.68                &32.34         \\
712    \hline
713     LU         &31611.28             &39.15        &3.51                    &35.64        \\
714     \hline
715     BT         &21296.46             &36.70            &6.60                &30.10       \\
716    \hline
717     SP         &15183.42             &35.19            &11.76               &23.43        \\
718    \hline
719     FT         &3856.54          &40.80        &5.67                &35.13        \\
720 \hline 
721   \end{tabular}
722   \label{table:res_s2}
723 \end{table}
724
725
726 \begin{figure}
727   \centering
728   \subfloat[Comparison the average of the results on 8 nodes]{%
729     \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
730   \quad%
731   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
732     \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
733   \label{fig:comp}
734   \caption{The comparison of the three power scenarios}
735 \end{figure}  
736
737
738
739 \subsection{The verifications of the proposed method}
740 \label{sec.verif}
741 The precision of the proposed algorithm mainly depends on the execution time prediction model defined in EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). 
742 The energy model is also significantly dependent  on the execution time model because the static energy is linearly related the execution time and the dynamic energy is related to the computation time. So, all of the work presented in this paper is based on the execution time model. To verify this model, the predicted execution time was compared to  the real execution time over Simgrid for all  the NAS parallel benchmarks running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, the maximum normalized difference between  the predicted execution time  and the real execution time is equal to 0.03 for all the NAS benchmarks.
743
744 Since  the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small
745 execution time: for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in table~(\ref{table:platform}), it  
746 takes on average \np[ms]{0.04}  for 4 nodes and \np[ms]{0.15} on average for 144 nodes to compute the best scaling factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number of iterations and $N$ is the number of computing nodes. The algorithm
747 needs  from 12 to 20 iterations to select the best vector of frequency scaling factors that gives the results of the section (\ref{sec.res}).
748
749 \section{Conclusion}
750 \label{sec.concl}
751
752
753 \section*{Acknowledgment}
754
755
756 % trigger a \newpage just before the given reference
757 % number - used to balance the columns on the last page
758 % adjust value as needed - may need to be readjusted if
759 % the document is modified later
760 %\IEEEtriggeratref{15}
761
762 \bibliographystyle{IEEEtran}
763 \bibliography{IEEEabrv,my_reference}
764 \end{document}
765
766 %%% Local Variables:
767 %%% mode: latex
768 %%% TeX-master: t
769 %%% fill-column: 80
770 %%% ispell-local-dictionary: "american"
771 %%% End:
772
773 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
774 % LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
775 % LocalWords:  de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
776 % LocalWords:  Scp Fmax Fdiff SimGrid GFlops Xeon EP BT