]> AND Private Git Repository - mpi-energy2.git/blob - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
b7e61b88beb6120db2c9046c207b9e8a69c7e444
[mpi-energy2.git] / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{subfig}
9 \usepackage{amsmath}
10
11 \usepackage{url}
12 \DeclareUrlCommand\email{\urlstyle{same}}
13
14 \usepackage[autolanguage,np]{numprint}
15 \AtBeginDocument{%
16   \renewcommand*\npunitcommand[1]{\text{#1}}
17   \npthousandthpartsep{}}
18
19 \usepackage{xspace}
20 \usepackage[textsize=footnotesize]{todonotes}
21 \newcommand{\AG}[2][inline]{%
22   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
23 \newcommand{\JC}[2][inline]{%
24   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
27
28 \newcommand{\Dist}{\textit{Dist}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Fdiff}{\Xsub{F}{diff}}
34 \newcommand{\Fmax}{\Xsub{F}{max}}
35 \newcommand{\Fnew}{\Xsub{F}{new}}
36 \newcommand{\Ileak}{\Xsub{I}{leak}}
37 \newcommand{\Kdesign}{\Xsub{K}{design}}
38 \newcommand{\MaxDist}{\textit{Max Dist}}
39 \newcommand{\Ntrans}{\Xsub{N}{trans}}
40 \newcommand{\Pdyn}{\Xsub{P}{dyn}}
41 \newcommand{\PnormInv}{\Xsub{P}{NormInv}}
42 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
43 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
44 \newcommand{\Pstates}{\Xsub{P}{states}}
45 \newcommand{\Pstatic}{\Xsub{P}{static}}
46 \newcommand{\Sopt}{\Xsub{S}{opt}}
47 \newcommand{\Tcomp}{\Xsub{T}{comp}}
48 \newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
49 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
50 \newcommand{\Tmax}{\Xsub{T}{max}}
51 \newcommand{\Tnew}{\Xsub{T}{New}}
52 \newcommand{\Told}{\Xsub{T}{Old}}
53
54 \begin{document}
55
56 \title{Energy Consumption Reduction in heterogeneous architecture using DVFS}
57
58 \author{%
59   \IEEEauthorblockN{%
60     Jean-Claude Charr,
61     Raphaël Couturier,
62     Ahmed Fanfakh and
63     Arnaud Giersch
64   }
65   \IEEEauthorblockA{%
66     FEMTO-ST Institute\\
67     University of Franche-Comté\\
68     IUT de Belfort-Montbéliard,
69     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
70     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
71     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
72     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
73    }
74   }
75
76 \maketitle
77
78 \begin{abstract}
79   
80 \end{abstract}
81
82 \section{Introduction}
83 \label{sec.intro}
84
85
86 \section{Related works}
87 \label{sec.relwork}
88
89
90
91
92
93 \section{The performance and energy consumption measurements on heterogeneous architecture}
94 \label{sec.exe}
95
96 % \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
97 %   can be deleted if we need space, we can just say we are interested in this
98 %   paper in homogeneous clusters}
99
100 \subsection{The execution time of message passing distributed iterative applications on a heterogeneous platform}
101
102 In this paper, we are interested in reducing the energy consumption of message
103 passing distributed iterative synchronous applications running over
104 heterogeneous platforms. We define a heterogeneous platform as a collection of
105 heterogeneous computing nodes interconnected via a high speed homogeneous
106 network. Therefore, each node has different characteristics such as computing
107 power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
108 have the same network bandwidth and latency.
109
110
111 \begin{figure}[t]
112   \centering
113     \includegraphics[scale=0.6]{fig/commtasks}
114   \caption{Parallel tasks on a heterogeneous platform}
115   \label{fig:heter}
116 \end{figure}
117
118  The  overall execution time  of a distributed iterative synchronous application over a heterogeneous platform  consists of the sum of the computation time and the communication time for every iteration on a node. However, due to the heterogeneous computation power of the computing nodes, slack times might occur when fast nodes have to
119  wait, during synchronous communications, for  the slower nodes to finish  their computations (see Figure~(\ref{fig:heter})). 
120  Therefore,  the overall execution time  of the program is the execution time of the slowest
121  task which have the highest computation time and no slack time.
122  
123 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in modern processors, that reduces the energy consumption
124 of a CPU by scaling down its voltage and frequency.  Since DVFS lowers the frequency of a CPU and consequently its computing power, the execution time of a program running over that scaled down processor might increase, especially if the program is compute bound.  The frequency reduction process can be  expressed by the scaling factor S which is the ratio between  the maximum and the new frequency of a CPU as in EQ (\ref{eq:s}).
125 \begin{equation}
126   \label{eq:s}
127  S = \frac{F_\textit{max}}{F_\textit{new}}
128 \end{equation}
129  The execution time of a compute bound sequential program is linearly proportional to the frequency scaling factor $S$. 
130  On the other hand,  message passing distributed applications consist of two parts: computation and communication. The execution time of the computation part is linearly proportional to the frequency scaling factor $S$ but  the communication time is not affected by the scaling factor because  the processors involved remain idle during the  communications~\cite{17}. The communication time for a task is the summation of periods of time that begin with an MPI call for sending or receiving   a message till the message is synchronously sent or received.
131
132 Since in a heterogeneous platform, each node has different characteristics,
133 especially different frequency gears, when applying DVFS operations on these
134 nodes, they may get different scaling factors represented by a scaling vector:
135 $(S_1, S_2,\dots, S_N)$ where $S_i$ is the scaling factor of processor $i$. To
136 be able to predict the execution time of message passing synchronous iterative
137 applications running over a heterogeneous platform, for different vectors of
138 scaling factors, the communication time and the computation time for all the
139 tasks must be measured during the first iteration before applying any DVFS
140 operation. Then the execution time for one iteration of the application with any
141 vector of scaling factors can be predicted using EQ (\ref{eq:perf}).
142 \begin{equation}
143   \label{eq:perf}
144  \textit  T_\textit{new} = 
145  \max_{i=1,2,\dots,N} (TcpOld_{i} \cdot S_{i}) +  TcmOld_{j}
146 \end{equation}
147 where $TcpOld_i$ is the computation time  of processor $i$ during the first iteration and $TcmOld_j$ is the communication time of the slowest processor $j$.
148   The model computes the maximum computation time 
149  with scaling factor from each node  added to the communication time of the slowest node, it means  only the
150  communication time without any slack time. 
151
152 This prediction model is based on our model for predicting the execution time of message passing distributed applications for homogeneous architectures~\cite{45}. The execution time prediction model is used in our method for optimizing both energy consumption and performance of iterative methods, which is presented in the following sections.
153
154
155 \subsection{Energy model for heterogeneous platform}
156
157 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
158 two power metrics: the static and the dynamic power.  While the first one is
159 consumed as long as the computing unit is turned on, the latter is only consumed during
160 computation times.  The dynamic power $P_{d}$ is related to the switching
161 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
162 operational frequency $F$, as shown in EQ(\ref{eq:pd}).
163 \begin{equation}
164   \label{eq:pd}
165   P_\textit{d} = \alpha \cdot C_L \cdot V^2 \cdot F
166 \end{equation}
167 The static power $P_{s}$ captures the leakage power as follows:
168 \begin{equation}
169   \label{eq:ps}
170    P_\textit{s}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
171 \end{equation}
172 where V is the supply voltage, $N_{trans}$ is the number of transistors,
173 $K_{design}$ is a design dependent parameter and $I_{leak}$ is a
174 technology-dependent parameter.  The energy consumed by an individual processor
175 to execute a given program can be computed as:
176 \begin{equation}
177   \label{eq:eind}
178    E_\textit{ind} =  P_\textit{d} \cdot T_{cp} + P_\textit{s} \cdot T
179 \end{equation}
180 where $T$ is the execution time of the program, $T_{cp}$ is the computation
181 time and $T_{cp} \leq T$.  $T_{cp}$ may be equal to $T$ if there is no
182 communication and no slack time.
183
184 The main objective of DVFS operation is to
185 reduce the overall energy consumption~\cite{37}.  The operational frequency $F$
186 depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
187 constant $\beta$.  This equation is used to study the change of the dynamic
188 voltage with respect to various frequency values in~\cite{3}.  The reduction
189 process of the frequency can be expressed by the scaling factor $S$ which is the
190 ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
191 The CPU governors are power schemes supplied by the operating
192 system's kernel to lower a core's frequency. we can calculate the new frequency 
193 $F_{new}$ from EQ(\ref{eq:s}) as follow:
194 \begin{equation}
195   \label{eq:fnew}
196    F_\textit{new} = S^{-1} \cdot F_\textit{max}
197 \end{equation}
198 Replacing $F_{new}$ in EQ(\ref{eq:pd}) as in EQ(\ref{eq:fnew}) gives the following equation for dynamic 
199 power consumption:
200 \begin{multline}
201   \label{eq:pdnew}
202    {P}_\textit{dNew} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
203    {} = \alpha \cdot C_L \cdot V^2 \cdot F \cdot S^{-3} = P_{dOld} \cdot S^{-3}
204 \end{multline}
205 where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the new frequency and the maximum frequency respectively.
206
207 According to EQ(\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
208 reducing the frequency by a factor of $S$~\cite{3}. Since the FLOPS of a CPU is proportional to the frequency of a CPU, the computation time is increased proportionally to $S$.  The new dynamic energy is the  dynamic power multiplied by the new time of computation and is given by the following equation:
209 \begin{equation}
210   \label{eq:Edyn}
211    E_\textit{dNew} = P_{dOld} \cdot S^{-3} \cdot (T_{cp} \cdot S)= S^{-2}\cdot P_{dOld} \cdot  T_{cp} 
212 \end{equation}
213 The static power is related to the power leakage of the CPU and is consumed during computation and even when idle. As in~\cite{3,46}, we assume that the static power of a processor is constant during idle and computation periods, and for all its available frequencies. 
214 The static energy is the static power multiplied by the execution time of the program. According to the execution time model in EQ(\ref{eq:perf}), 
215 the execution time of the program is the summation of the computation and the communication times. The computation time is linearly related  
216 to the frequency scaling factor, while this scaling factor does not affect the communication time. The static energy 
217 of a processor after scaling its frequency is computed as follows: 
218 \begin{equation}
219   \label{eq:Estatic}
220  E_\textit{s} = P_\textit{s} \cdot (T_{cp} \cdot S  + T_{cm})
221 \end{equation}
222
223 In the considered heterogeneous platform, each processor $i$ might have different dynamic and static powers, noted as $P_{di}$ and $P_{si}$ respectively. Therefore, even if the distributed message passing iterative application is load balanced, the computation time of each CPU $i$ noted $T_{cpi}$ might be different and different frequency  scaling factors might be computed in order to decrease the overall energy consumption of the application and reduce the slack times. The communication time of a processor $i$ is noted as $T_{cmi}$ and could contain slack times if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do not have equal communication times. While the dynamic energy is computed according to the  frequency scaling factor and the dynamic power of each node as in EQ(\ref{eq:Edyn}),  the static energy is computed as the sum of the execution time of each processor multiplied by its static power. The overall energy consumption of a message passing  distributed application  executed over a heterogeneous platform is the summation of all dynamic and static energies for each  processor.  It is computed as follows:
224 \begin{multline}
225   \label{eq:energy}
226  E = \sum_{i=1}^{N} {(S_i^{-2} \cdot P_{di} \cdot  T_{cpi})} + {} \\
227  \sum_{i=1}^{N} (P_{si} \cdot (\max_{i=1,2,\dots,N} (T_{cpi} \cdot S_{i}) +
228  \min_{i=1,2,\dots,N} {T_{cmi}))}
229  \end{multline}
230  
231 Reducing the the frequencies of the processors according to the vector of
232 scaling factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the
233 application and thus, increase the static energy because the execution time is
234 increased~\cite{36}.
235
236 \section{Optimization of both energy consumption and performance}
237 \label{sec.compet}
238
239 Applying DVFS to lower level not surly reducing the energy consumption to
240 minimum level. Also, a big scaling for the frequency produces high performance
241 degradation percent. Moreover, by considering the drastically increase in
242 execution time of parallel program, the static energy is related to this time
243 and it also increased by the same ratio. Thus, the opportunity for gaining more
244 energy reduction is restricted. For that choosing frequency scaling factors is
245 very important process to taking into account both energy and performance. In
246 our previous work~\cite{45}, we are proposed a method that selects the optimal
247 frequency scaling factor for an homogeneous cluster, depending on the trade-off
248 relation between the energy and performance. In this work we have an
249 heterogeneous cluster, at each node there is different scaling factors, so our
250 goal is to selects the optimal set of frequency scaling factors,
251 $Sopt_1,Sopt_2,\dots,Sopt_N$, that gives the best trade-off between energy
252 consumption and performance. The relation between the energy and the execution
253 time is complex and nonlinear, Thus, unlike the relation between the performance
254 and the scaling factor, the relation of the energy with the frequency scaling
255 factors is nonlinear, for more details refer to~\cite{17}.  Moreover, they are
256 not measured using the same metric.  To solve this problem, we normalize the
257 execution time by calculating the ratio between the new execution time (the
258 scaled execution time) and the old one as follow:
259 \begin{multline}
260   \label{eq:pnorm}
261   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
262        {} = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}}
263            {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
264 \end{multline}
265
266
267 By the same way, we are normalize the energy by calculating the ratio between the consumed energy with scaled frequency and the consumed energy without scaled frequency:
268 \begin{multline}
269   \label{eq:enorm}
270   E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
271   {} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +
272  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
273  \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
274 \end{multline} 
275 Where $T_{New}$ and $T_{Old}$ is computed as in EQ(\ref{eq:pnorm}). The second
276 problem is that the optimization operation for both energy and performance is
277 not in the same direction.  In other words, the normalized energy and the
278 normalized execution time curves are not at the same direction.  While the main
279 goal is to optimize the energy and execution time in the same time.  According
280 to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the set of frequency
281 scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy and the execution
282 time simultaneously.  But the main objective is to produce maximum energy
283 reduction with minimum execution time reduction.  Many researchers used
284 different strategies to solve this nonlinear problem for example
285 see~\cite{19,42}, their methods add big overheads to the algorithm to select the
286 suitable frequency.  In this paper we are present a method to find the optimal
287 set of frequency scaling factors to optimize both energy and execution time
288 simultaneously without adding a big overhead.  Our solution for this problem is
289 to make the optimization process for energy and execution time follow the same
290 direction.  Therefore, we inverse the equation of the normalized execution time,
291 the normalized performance, as follows:
292 \begin{multline}
293   \label{eq:pnorm_inv}
294   P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
295           = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
296             { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}} 
297 \end{multline}
298
299
300 \begin{figure}
301   \centering
302   \subfloat[Homogeneous platform]{%
303     \includegraphics[width=.22\textwidth]{fig/homo}\label{fig:r1}}%
304   \qquad%
305   \subfloat[Heterogeneous platform]{%
306     \includegraphics[width=.22\textwidth]{fig/heter}\label{fig:r2}}
307   \label{fig:rel}
308   \caption{The energy and performance relation}
309 \end{figure}
310
311 Then, we can model our objective function as finding the maximum distance
312 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
313 curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
314 represents the minimum energy consumption with minimum execution time (better
315 performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}) .  Then our objective
316 function has the following form:
317 \begin{equation}
318   \label{eq:max}
319   Max Dist = 
320   \max_{i=1,\dots F, j=1,\dots,N}
321       (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
322        \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
323 \end{equation}
324 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each nodes. 
325 Then we can select the optimal set of scaling factors that satisfies EQ~(\ref{eq:max}).  Our objective function can
326 work with any energy model or energy values stored in a data file.
327 Moreover, this function works in optimal way when the energy curve has a convex
328 form over the available frequency scaling factors as shown in~\cite{15,3,19}.
329
330 \section{The heterogeneous scaling algorithm }
331 \label{sec.optim}
332
333 In this section we proposed an heterogeneous scaling algorithm,
334 (figure~\ref{HSA}), that selects the optimal set of scaling factors from each
335 node.  The algorithm is numerates the suitable range of available scaling
336 factors for each node in the heterogeneous cluster, returns a set of optimal
337 frequency scaling factors for each node. Using heterogeneous cluster is produces
338 different workloads for each node. Therefore, the fastest nodes waiting at the
339 barrier for the slowest nodes to finish there work as in figure
340 (\ref{fig:heter}). Our algorithm takes into account these imbalanced workloads
341 when is starts to search for selecting the best scaling factors. So, the
342 algorithm is selecting the initial frequencies values for each node proportional
343 to the times of computations that gathered from the first iteration. As an
344 example in figure (\ref{fig:st_freq}), the algorithm don't test the first
345 frequencies of the fastest nodes until it converge their frequencies to the
346 frequency of the slowest node. If the algorithm is starts test changing the
347 frequency of the slowest nodes from beginning, we are loosing performance and
348 then not selecting the best trade-off (the distance). This case will be similar
349 to the homogeneous cluster when all nodes scales their frequencies together from
350 the beginning. In this case there is a small distance between energy and
351 performance curves, for example see the figure(\ref{fig:r1}).  Then the
352 algorithm searching for optimal frequency scaling factor from the selected
353 frequencies until the last available ones.
354 \begin{figure}[t]
355   \centering
356     \includegraphics[scale=0.5]{fig/start_freq}
357   \caption{Selecting the initial frequencies}
358   \label{fig:st_freq}
359 \end{figure}
360
361
362 To compute the initial frequencies, the algorithm firstly needs to compute the computation scaling factors $Scp_i$ for each node. Each one of these factors represent a ratio between the computation time of the slowest node and the computation time of the node $i$ as follow:
363 \begin{equation}
364   \label{eq:Scp}
365  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
366 \end{equation}
367 Depending on the initial computation scaling factors EQ(\ref{eq:Scp}), the algorithm computes the initial frequencies for all nodes as a ratio between the 
368 maximum frequency of node $i$  and the computation scaling factor $Scp_i$ as follow:
369 \begin{equation}
370   \label{eq:Fint}
371  F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
372 \end{equation}
373 \begin{figure}[tp]
374   \begin{algorithmic}[1]
375     % \footnotesize
376     \Require ~
377     \begin{description}
378     \item[$Tcp_i$] array of all computation times for all nodes during one iteration and with highest frequency.
379     \item[$Tcm_i$] array of all communication times for all nodes during one iteration and with highest frequency.
380     \item[$Fmax_i$] array of the maximum frequencies for all nodes.
381     \item[$Pd_i$] array of the dynamic powers for all nodes.
382     \item[$Ps_i$] array of the static powers for all nodes.
383     \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
384     \end{description}
385     \Ensure $Sopt_1, \dots, Sopt_N$ is a set of optimal scaling factors
386
387     \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
388     \State $F_{i} \gets  \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
389     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
390     \If{(not the first frequency)}
391           \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
392     \EndIf 
393     \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
394     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
395     \State $Dist \gets 0$
396     \State  $Sopt_{i} \gets 1,~i=1,\dots,N. $
397     \While {(all nodes not reach their  minimum  frequency)}
398         \If{(not the last freq. \textbf{and} not the slowest node)}
399         \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
400         \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,\dots,N.$
401         \EndIf
402        \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + min_\textit{~i=1,\dots,N}(Tcm_i) $
403        \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} + $  \hspace*{43 mm} 
404                $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
405        \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
406        \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
407       \If{$(\Pnorm - \Enorm > \Dist)$}
408         \State $Sopt_{i} \gets S_{i},~i=1,\dots,N. $
409         \State $\Dist \gets \Pnorm - \Enorm$
410       \EndIf
411     \EndWhile
412     \State  Return $Sopt_1,Sopt_2,\dots,Sopt_N$
413   \end{algorithmic}
414   \caption{Heterogeneous scaling algorithm}
415   \label{HSA}
416 \end{figure}
417 When the initial frequencies are computed the algorithm numerates all available
418 scaling factors starting from these frequencies until all nodes reach their
419 minimum frequencies. At each iteration the algorithm remains the frequency of
420 the slowest node without change and scaling the frequency of the other
421 nodes. This is gives better performance and energy trade-off.  The proposed
422 algorithm works online during the execution time of the MPI program.  Its
423 returns a set of optimal frequency scaling factors $Sopt_i$ depending on the
424 objective function EQ(\ref{eq:max}). The program changes the new frequencies of
425 the CPUs according to the computed scaling factors.  This algorithm has a small
426 execution time: for an heterogeneous cluster composed of four different types of
427 nodes having the characteristics presented in table~(\ref{table:platform}), it
428 takes \np[ms]{0.04} on average for 4 nodes and \np[ms]{0.1} on average for 128
429 nodes.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the
430 number of iterations and $N$ is the number of computing nodes. The algorithm
431 needs on average from 12 to 20 iterations for all the NAS benchmark on class C
432 to selects the best set of frequency scaling factors. Its called just once
433 during the execution of the program.  The DVFS figure~(\ref{dvfs}) shows where
434 and when the algorithm is called in the MPI program.
435 \begin{figure}[tp]
436   \begin{algorithmic}[1]
437     % \footnotesize
438     \For {$k=1$ to \textit{some iterations}}
439       \State Computations section.
440       \State Communications section.
441       \If {$(k=1)$}
442         \State Gather all times of computation and\newline\hspace*{3em}%
443                communication from each node.
444         \State Call algorithm from Figure~\ref{HSA} with these times.
445         \State Compute the new frequencies from the\newline\hspace*{3em}%
446                returned optimal scaling factors.
447         \State Set the new frequencies to nodes.
448       \EndIf
449     \EndFor
450   \end{algorithmic}
451   \caption{DVFS algorithm}
452   \label{dvfs}
453 \end{figure}
454
455 \section{Experimental results}
456 \label{sec.expe}
457
458 The experiments of this work are executed on the simulator SimGrid/SMPI
459 v3.10~\cite{casanova+giersch+legrand+al.2014.versatile}. We configure the
460 simulator to use a heterogeneous cluster with one core per node. The proposed
461 heterogeneous cluster has four different types of nodes. Each node in cluster
462 has different characteristics such as the maximum frequency speed, the number of
463 available frequencies and dynamic and static powers values, see table
464 (\ref{table:platform}). These different types of processing nodes simulate some
465 real Intel processors. The maximum number of nodes that supported by the cluster
466 is 144 nodes according to characteristics of some MPI programs of the NAS
467 benchmarks that used. We are use the same number from each type of nodes when
468 running the MPI programs, for example if we execute the program on 8 node, there
469 are 2 nodes from each type participating in the computing. The dynamic and
470 static power values is different from one type to other. Each node has a dynamic
471 and static power values proportional to their performance/GFlops, for more
472 details see the Intel data sheets in \cite{47}.  Each node has a percentage of
473 80\% for dynamic power and 20\% for static power from the hole power
474 consumption, the same assumption is made in \cite{45,3}. These nodes are
475 connected via an Ethernet network with 1 Gbit/s bandwidth.
476 \begin{table}[htb]
477   \caption{Heterogeneous nodes characteristics}
478   % title of Table
479   \centering
480   \begin{tabular}{|*{7}{l|}}
481     \hline
482     Node     & Similar     & Max        & Min          & Diff.          & Dynamic      & Static \\
483     type     & to          & Freq. GHz  & Freq. GHz    & Freq GHz       & power        & power \\
484     \hline
485     1       & core-i3       & 2.5         & 1.2          & 0.1           & 20~w         &4~w    \\
486             &  2100T        &             &              &               &              &  \\
487     \hline
488     2       & Xeon          & 2.66        & 1.6          & 0.133         & 25~w         &5~w    \\
489             & 7542          &             &              &               &              &  \\
490     \hline
491     3       & core-i5       & 2.9         & 1.2          & 0.1           & 30~w         &6~w    \\
492             & 3470s         &             &              &               &              &  \\
493     \hline
494     4       & core-i7       & 3.4         & 1.6          & 0.133         & 35~w         &7~w    \\
495             & 2600s         &             &              &               &              &  \\
496     \hline
497   \end{tabular}
498   \label{table:platform}
499 \end{table}
500
501  
502 %\subsection{Performance prediction verification}
503
504
505 \subsection{The experimental results of the scaling algorithm}
506 \label{sec.res}
507
508 The proposed algorithm was applied to seven MPI programs of the NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) NPB v3.
509 \cite{44},  which were run with three classes (A, B and C).
510 In this experiments we are focus on running of the class C, the biggest class compared to A and B, on different number of 
511 nodes, from 4 to 128 or 144 nodes according to the type of the MPI program.  Depending on the proposed energy consumption model EQ(\ref{eq:energy}),
512  we are measure the energy consumption for all NAS MPI programs. The dynamic and static power values used under the same assumption used by \cite{45,3}. We used a percentage of 80\% for dynamic power from all power consumption of the CPU and 20\% for static power. The heterogeneous nodes in table (\ref{table:platform}) have different  simulated performance, ranked from the node of type 1 with smaller performance/GFlops to the highest performance/GFlops for node 4. Therefore, the power values used proportionally increased from node 1 to node 4 that with highest performance. Then we used an assumption that the power consumption increases linearly with the performance/GFlops of the processor see \cite{48}.   
513  
514 \begin{table}[htb]
515   \caption{Running NAS benchmarks on 4 nodes }
516   % title of Table
517   \centering
518   \begin{tabular}{|*{7}{l|}}
519     \hline
520     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
521     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
522     \hline
523     CG         &  64.64        & 3560.39        &34.16        &6.72               &27.44       \\
524     \hline 
525     MG         & 18.89         & 1074.87            &35.37            &4.34                   &31.03       \\
526    \hline
527     EP         &79.73          &5521.04         &26.83            &3.04               &23.79      \\
528    \hline
529     LU         &308.65         &21126.00           &34.00             &6.16                   &27.84      \\
530     \hline
531     BT         &360.12         &21505.55           &35.36         &8.49               &26.87     \\
532    \hline
533     SP         &234.24         &13572.16           &35.22         &5.70               &29.52    \\
534    \hline
535     FT         &81.58          &4151.48        &35.58         &0.99                   &34.59    \\
536 \hline 
537   \end{tabular}
538   \label{table:res_4n}
539 \end{table}
540
541 \begin{table}[htb]
542   \caption{Running NAS benchmarks on 8 and 9 nodes }
543   % title of Table
544   \centering
545   \begin{tabular}{|*{7}{l|}}
546     \hline
547     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
548     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
549     \hline
550     CG         &36.11              &3263.49             &31.25        &7.12                    &24.13     \\
551     \hline 
552     MG         &8.99           &953.39          &33.78        &6.41                    &27.37     \\
553    \hline
554     EP         &40.39          &5652.81         &27.04        &0.49                    &26.55     \\
555    \hline
556     LU         &218.79             &36149.77        &28.23        &0.01                    &28.22      \\
557     \hline
558     BT         &166.89         &23207.42            &32.32            &7.89                    &24.43      \\
559    \hline
560     SP         &104.73         &18414.62            &24.73            &2.78                    &21.95      \\
561    \hline
562     FT         &51.10          &4913.26         &31.02        &2.54                    &28.48      \\
563 \hline 
564   \end{tabular}
565   \label{table:res_8n}
566 \end{table}
567
568 \begin{table}[htb]
569   \caption{Running NAS benchmarks on 16 nodes }
570   % title of Table
571   \centering
572   \begin{tabular}{|*{7}{l|}}
573     \hline
574     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
575     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
576     \hline
577     CG         &31.74          &4373.90         &26.29        &9.57                    &16.72          \\
578     \hline 
579     MG         &5.71           &1076.19         &32.49        &6.05                    &26.44         \\
580    \hline
581     EP         &20.11          &5638.49         &26.85        &0.56                    &26.29         \\
582    \hline
583     LU         &144.13         &42529.06            &28.80            &6.56                    &22.24         \\
584     \hline
585     BT         &97.29          &22813.86            &34.95        &5.80                &29.15         \\
586    \hline
587     SP         &66.49          &20821.67            &22.49            &3.82                    &18.67         \\
588    \hline
589     FT             &37.01          &5505.60             &31.59        &6.48                    &25.11         \\
590 \hline 
591   \end{tabular}
592   \label{table:res_16n}
593 \end{table}
594
595 \begin{table}[htb]
596   \caption{Running NAS benchmarks on 32 and 36 nodes }
597   % title of Table
598   \centering
599   \begin{tabular}{|*{7}{l|}}
600     \hline
601     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
602     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
603     \hline
604     CG         &32.35          &6704.21         &16.15        &5.30                    &10.85           \\
605     \hline 
606     MG         &4.30           &1355.58         &28.93        &8.85                    &20.08          \\
607    \hline
608     EP         &9.96           &5519.68         &26.98        &0.02                    &26.96          \\
609    \hline
610     LU         &99.93          &67463.43            &23.60            &2.45                    &21.15          \\
611     \hline
612     BT         &48.61          &23796.97            &34.62            &5.83                    &28.79          \\
613    \hline
614     SP         &46.01          &27007.43            &22.72            &3.45                    &19.27           \\
615    \hline
616     FT             &28.06          &7142.69             &23.09        &2.90                    &20.19           \\
617 \hline 
618   \end{tabular}
619   \label{table:res_32n}
620 \end{table}
621
622 \begin{table}[htb]
623   \caption{Running NAS benchmarks on 64 nodes }
624   % title of Table
625   \centering
626   \begin{tabular}{|*{7}{l|}}
627     \hline
628     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
629     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
630     \hline
631     CG         &46.65          &17521.83            &8.13             &1.68                    &6.45           \\
632     \hline 
633     MG         &3.27           &1534.70         &29.27        &14.35               &14.92          \\
634    \hline
635     EP         &5.05           &5471.1084           &27.12            &3.11                &24.01         \\
636    \hline
637     LU         &73.92          &101339.16           &21.96            &3.67                    &18.29         \\
638     \hline
639     BT         &39.99          &27166.71            &32.02            &12.28               &19.74         \\
640    \hline
641     SP         &52.00          &49099.28            &24.84            &0.03                    &24.81         \\
642    \hline
643     FT         &25.97          &10416.82        &20.15        &4.87                    &15.28         \\
644 \hline 
645   \end{tabular}
646   \label{table:res_64n}
647 \end{table}
648
649
650 \begin{table}[htb]
651   \caption{Running NAS benchmarks on 128 and 144 nodes }
652   % title of Table
653   \centering
654   \begin{tabular}{|*{7}{l|}}
655     \hline
656     Method     & Execution     & Energy         & Energy      & Performance        & Distance     \\
657     name       & time/s        & consumption/J  & saving\%    & degradation\%      &              \\
658     \hline
659     CG         &56.92          &41163.36        &4.00         &1.10                    &2.90          \\
660     \hline 
661     MG         &3.55           &2843.33         &18.77        &10.38               &8.39          \\
662    \hline
663     EP         &2.67           &5669.66         &27.09        &0.03                    &27.06         \\
664    \hline
665     LU         &51.23          &144471.90       &16.67        &2.36                    &14.31         \\
666     \hline
667     BT         &37.96          &44243.82            &23.18            &1.28                    &21.90         \\
668    \hline
669     SP         &64.53          &115409.71           &26.72            &0.05                    &26.67         \\
670    \hline
671     FT         &25.51          &18808.72            &12.85            &2.84                    &10.01         \\
672 \hline 
673   \end{tabular}
674   \label{table:res_128n}
675 \end{table}
676
677 The results of applying the proposed scaling algorithm to NAS benchmarks is demonstrated in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, 
678 \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). These tables show the results for running the NAS benchmarks on different number of nodes. In general the energy saving percent is decreased  when the number of the computing nodes is increased. While the distance is decreased by the same direction. This because when we are run the MPI programs on a big number of nodes the communications is biggest than the computations, so the static energy is increased linearly to these times. The tables also show that performance degradation percent still approximately the same or decreased a little when the number of computing nodes is increased. This  gives good a prove that the proposed algorithm keeping as mush as possible the performance degradation. 
679
680 \begin{figure}
681   \centering
682   \subfloat[CG, MG, LU and FT Benchmarks]{%
683     \includegraphics[width=.23185\textwidth]{fig/avg_eq}\label{fig:avg_eq}}%
684   \quad%
685   \subfloat[BT and SP benchmarks]{%
686     \includegraphics[width=.23185\textwidth]{fig/avg_neq}\label{fig:avg_neq}}
687   \label{fig:avg}
688   \caption{The average of energy and performance for all NAS benchmarks running with difference number of nodes}
689 \end{figure}
690
691 In the NAS benchmarks there are some programs executed on different number of
692 nodes. The benchmarks CG, MG, LU and FT executed on 2 to a power of (1, 2, 4, 8,
693 \dots{}) of nodes. The other benchmarks such as BT and SP executed on 2 to a
694 power of (1, 2, 4, 9, \dots{}) of nodes. We are take the average of energy
695 saving, performance degradation and distances for all results of NAS
696 benchmarks. The average of these three objectives are plotted to the number of
697 nodes as in plots (\ref{fig:avg_eq} and \ref{fig:avg_neq}).  In CG, MG, LU, and
698 FT benchmarks the average of energy saving is decreased when the number of nodes
699 is increased due to the increasing in the communication times as mentioned
700 before. Thus, the average of distances (our objective function) is decreased
701 linearly with energy saving while keeping the average of performance degradation
702 the same. In BT and SP benchmarks, the average of energy saving is not decreased
703 significantly compare to other benchmarks when the number of nodes is
704 increased. Nevertheless, the average of performance degradation approximately
705 still the same ratio. This difference is depends on the characteristics of the
706 benchmarks such as the computation to communication ratio that has.
707
708 \subsection{The results for different powers scenarios}
709
710 The results of the previous section are obtained using a percentage of 80\% for
711 dynamic power and 20\% for static power of total power consumption. In this
712 section we are change these ratio by using two others scenarios. Because is
713 interested to measure the ability of the proposed algorithm to changes it
714 behavior when these power ratios are changed. In fact, we are use two different
715 scenarios for dynamic and static power ratios in addition to the previous
716 scenario in section (\ref{sec.res}). Therefore, we have three different
717 scenarios for three different dynamic and static power ratios refer to as:
718 70\%-20\%, 80\%-20\% and 90\%-10\% scenario. The results of these scenarios
719 running NAS benchmarks class C on 8 or 9 nodes are place in the tables
720 (\ref{table:res_s1} and \ref{table:res_s2}).
721
722  \begin{table}[htb]
723   \caption{The results of 70\%-30\% powers scenario}
724   % title of Table
725   \centering
726   \begin{tabular}{|*{6}{l|}}
727     \hline
728     Method     & Energy          & Energy      & Performance        & Distance     \\
729     name       & consumption/J   & saving\%    & degradation\%      &              \\
730     \hline
731     CG         &4144.21          &22.42        &7.72                &14.70         \\
732     \hline 
733     MG         &1133.23          &24.50        &5.34                &19.16          \\
734    \hline
735     EP         &6170.30         &16.19         &0.02                &16.17          \\
736    \hline
737     LU         &39477.28        &20.43         &0.07                &20.36          \\
738     \hline
739     BT         &26169.55            &25.34             &6.62                &18.71          \\
740    \hline
741     SP         &19620.09            &19.32             &3.66                &15.66          \\
742    \hline
743     FT         &6094.07         &23.17         &0.36                &22.81          \\
744 \hline 
745   \end{tabular}
746   \label{table:res_s1}
747 \end{table}
748
749
750
751 \begin{table}[htb]
752   \caption{The results of 90\%-10\% powers scenario}
753   % title of Table
754   \centering
755   \begin{tabular}{|*{6}{l|}}
756     \hline
757     Method     & Energy          & Energy      & Performance        & Distance     \\
758     name       & consumption/J   & saving\%    & degradation\%      &              \\
759     \hline
760     CG         &2812.38          &36.36        &6.80                &29.56         \\
761     \hline 
762     MG         &825.427          &38.35        &6.41                &31.94         \\
763    \hline
764     EP         &5281.62          &35.02        &2.68                &32.34         \\
765    \hline
766     LU         &31611.28             &39.15        &3.51                    &35.64        \\
767     \hline
768     BT         &21296.46             &36.70            &6.60                &30.10       \\
769    \hline
770     SP         &15183.42             &35.19            &11.76               &23.43        \\
771    \hline
772     FT         &3856.54          &40.80        &5.67                &35.13        \\
773 \hline 
774   \end{tabular}
775   \label{table:res_s2}
776 \end{table}
777
778
779 \begin{figure}
780   \centering
781   \subfloat[Comparison the average of the results on 8 nodes]{%
782     \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
783   \quad%
784   \subfloat[Comparison the selected frequency scaling factors for 8 nodes]{%
785     \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
786   \label{fig:comp}
787   \caption{The comparison of the three power scenarios}
788 \end{figure}
789
790 To compare the results of these three powers scenarios, we are take the average of the performance degradation, the energy saving and the distances for all NAS benchmarks running on 8 or 9 nodes of class C, as in figure (\ref{fig:sen_comp}). Thus, according to the average of the results, the energy saving ratio is increased when using the a higher percentage for dynamic power (e.g. 90\%-10\% scenario). While the average of energy saving is decreased in 70\%-30\% scenario. 
791 Because the static energy consumption is increase. Moreover, the average of distances is more related to energy saving changes. The average of the performance degradation is decreased when using a higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\% scenario). The raison behind these relations, that the proposed algorithm optimize both energy consumption and performance in the same time. Therefore, when using a higher ratio for dynamic power the algorithm selecting bigger frequency scaling factors values, more energy saving versus more performance degradation, for example see the figure (\ref{fig:scales_comp}). The inverse happen when using a higher ratio for  static  power, the algorithm proportionally  selects a smaller scaling values, less energy saving versus less performance degradation. This is because the  
792 algorithm also keeps as much as possible the static energy consumption that is always related to execution time. 
793
794 \subsection{The verifications of the proposed method}
795 \label{sec.verif}
796 The precision of the proposed algorithm mainly depends on the execution time prediction model and the energy model. The energy model is significantly depends on the execution time model EQ(\ref{eq:perf}), that the energy static related linearly. So, we are compare the predicted execution time with the real execution time (Simgrid time)  values that gathered  offline for the NAS benchmarks class B executed on 8 or 9 nodes. The execution time model can predicts 
797 the real execution time by maximum normalized error 0.03 of all NAS benchmarks. The second verification that we are make is for the scaling algorithm to prove its ability to selects the best set of frequency scaling factors. Therefore, we are expand the algorithm to test at each iteration the frequency scaling factor of the slowest node with the all scaling factors available of the other nodes. This version of the algorithm is applied to different NAS benchmarks classes with different number of nodes. The results from the two algorithms is identical. While the proposed algorithm is runs faster, 10 times faster on average than the expanded algorithm.
798
799 \section{Conclusion}
800 \label{sec.concl}
801
802
803 \section*{Acknowledgment}
804
805
806 % trigger a \newpage just before the given reference
807 % number - used to balance the columns on the last page
808 % adjust value as needed - may need to be readjusted if
809 % the document is modified later
810 %\IEEEtriggeratref{15}
811
812 \bibliographystyle{IEEEtran}
813 \bibliography{IEEEabrv,my_reference}
814 \end{document}
815
816 %%% Local Variables:
817 %%% mode: latex
818 %%% TeX-master: t
819 %%% fill-column: 80
820 %%% ispell-local-dictionary: "american"
821 %%% End:
822
823 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
824 % LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
825 % LocalWords:  de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
826 % LocalWords:  Scp Fmax Fdiff SimGrid GFlops Xeon EP BT