]> AND Private Git Repository - mpi-energy2.git/blob - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correction
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{algorithm}
9 \usepackage{subfig}
10 \usepackage{amsmath}
11 \usepackage{url}
12 \usepackage{multirow}
13 \DeclareUrlCommand\email{\urlstyle{same}}
14
15 \usepackage[autolanguage,np]{numprint}
16 \AtBeginDocument{%
17   \renewcommand*\npunitcommand[1]{\text{#1}}
18   \npthousandthpartsep{}}
19
20 \usepackage{xspace}
21 \usepackage[textsize=footnotesize]{todonotes}
22 \newcommand{\AG}[2][inline]{%
23   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
24 \newcommand{\JC}[2][inline]{%
25   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
26
27 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
28
29 %% used to put some subscripts lower, and make them more legible
30 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
31
32 \newcommand{\CL}{\Xsub{C}{L}}
33 \newcommand{\Dist}{\mathit{Dist}}
34 \newcommand{\EdNew}{\Xsub{E}{dNew}}
35 \newcommand{\Eind}{\Xsub{E}{ind}}
36 \newcommand{\Enorm}{\Xsub{E}{Norm}}
37 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
38 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
39 \newcommand{\Es}{\Xsub{E}{S}}
40 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
41 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
42 \newcommand{\Fnew}{\Xsub{F}{new}}
43 \newcommand{\Ileak}{\Xsub{I}{leak}}
44 \newcommand{\Kdesign}{\Xsub{K}{design}}
45 \newcommand{\MaxDist}{\mathit{Max}\Dist}
46 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
47 \newcommand{\Ntrans}{\Xsub{N}{trans}}
48 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
49 \newcommand{\PdNew}{\Xsub{P}{dNew}}
50 \newcommand{\PdOld}{\Xsub{P}{dOld}}
51 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
52 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
53 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
54 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
55 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
56 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
57 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
58 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
59 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
60 \newcommand{\Tnew}{\Xsub{T}{New}}
61 \newcommand{\Told}{\Xsub{T}{Old}}
62
63 \begin{document}
64
65 \title{Energy Consumption Reduction with DVFS for \\
66   Message Passing Iterative Applications on \\
67   Heterogeneous Architectures}
68
69 \author{%
70   \IEEEauthorblockN{%
71     Jean-Claude Charr,
72     Raphaël Couturier,
73     Ahmed Fanfakh and
74     Arnaud Giersch
75   }
76   \IEEEauthorblockA{%
77     FEMTO-ST Institute, University of Franche-Comté\\
78     IUT de Belfort-Montbéliard,
79     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
80     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
81     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
82     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
83    }
84   }
85
86 \maketitle
87
88 \section{Introduction}
89 \label{sec.intro}
90 \textcolor{blue}{
91 The need for more computing power is continually increasing. To partially
92 satisfy this need, most supercomputers constructors just put more computing
93 nodes in their platform. The resulting platforms may achieve higher floating
94 point operations per second (FLOPS), but the energy consumption and the heat
95 dissipation are also increased.  As an example, the Chinese supercomputer
96 Tianhe-2 had the highest FLOPS in June 2015  according to the Top500 list
97 \cite{TOP500_Supercomputers_Sites}.  However, it was also the most power hungry
98 platform with its over 3 million cores consuming around 17.8 megawatts.
99 Moreover, according to the U.S.  annual energy outlook 2015
100 \cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour
101 was approximately equal to \$70.  Therefore, the price of the energy consumed by
102 the Tianhe-2 platform is approximately more than \$10 million each year.  The
103 computing platforms must be more energy efficient and offer the highest number
104 of FLOPS per watt possible, such as the Shoubu-ExaScaler from RIKEN
105 which became the top of the Green500 list in June 2015 \cite{Green500_List}.
106 This heterogeneous platform executes more than 7 GFLOPS per watt while consuming
107 50.32 kilowatts.
108 }
109
110 Besides platform improvements, there are many software and hardware techniques
111 to lower the energy consumption of these platforms, such as scheduling, DVFS,
112 \dots{} DVFS is a widely used process to reduce the energy consumption of a
113 processor by lowering its frequency
114 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
115 the number of FLOPS executed by the processor which may increase the execution
116 time of the application running over that processor.  Therefore, researchers use
117 different optimization strategies to select the frequency that gives the best
118 trade-off between the energy reduction and performance degradation ratio. In
119 \cite{Our_first_paper} and \cite{pdsec2015} , a frequencies selecting algorithm was proposed to reduce
120 the energy consumption of message passing iterative applications running over
121 homogeneous  and heterogeneous clusters respectively.  
122 The results of the experiments show significant energy
123 consumption reductions. In this paper, a new frequency selecting algorithm
124 adapted for heterogeneous platform is presented. It selects the vector of
125 frequencies, for a heterogeneous grid platform running a message passing iterative
126 application, that simultaneously tries to offer the maximum energy reduction and
127 minimum performance degradation ratio. The algorithm has a very small overhead,
128 works online and does not need any training or profiling.
129
130 \textcolor{blue}{
131 This paper is organized as follows: Section~\ref{sec.relwork} presents some
132 related works from other authors.  Section~\ref{sec.exe} describes how the
133 execution time of message passing programs can be predicted.  It also presents
134 an energy model that predicts the energy consumption of an application running
135 over a heterogeneous grid. Section~\ref{sec.compet} presents the
136 energy-performance objective function that maximizes the reduction of energy
137 consumption while minimizing the degradation of the program's performance.
138 Section~\ref{sec.optim} details the proposed frequencies selecting algorithm.
139 Section~\ref{sec.expe} presents the results of applying the algorithm on the 
140 NAS parallel benchmarks and executing them on a grid'5000 testbed. 
141 It shows the results of running different scenarios using multi-cores and one core per node 
142 and comparing them. It also shows the results of running
143 three different power scenarios and comparing them. Moreover, it shows the
144 comparison results between the proposed method and an existing method.  Finally,
145 in Section~\ref{sec.concl} the paper ends with a summary and some future works.}
146
147 \section{Related works}
148 \label{sec.relwork}
149
150 DVFS is a technique used in modern processors to scale down both the voltage and
151 the frequency of the CPU while computing, in order to reduce the energy
152 consumption of the processor. DVFS is also allowed in GPUs to achieve the same
153 goal. Reducing the frequency of a processor lowers its number of FLOPS and may
154 degrade the performance of the application running on that processor, especially
155 if it is compute bound. Therefore selecting the appropriate frequency for a
156 processor to satisfy some objectives, while taking into account all the
157 constraints, is not a trivial operation.  Many researchers used different
158 strategies to tackle this problem. Some of them developed online methods that
159 compute the new frequency while executing the application, such
160 as~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}.
161 Others used offline methods that may need to run the application and profile
162 it before selecting the new frequency, such
163 as~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}.
164 The methods could be heuristics, exact or brute force methods that satisfy
165 varied objectives such as energy reduction or performance. They also could be
166 adapted to the execution's environment and the type of the application such as
167 sequential, parallel or distributed architecture, homogeneous or heterogeneous
168 platform, synchronous or asynchronous application, \dots{}
169
170 In this paper, we are interested in reducing energy for message passing
171 iterative synchronous applications running over heterogeneous grid platforms.  Some
172 works have already been done for such platforms and they can be classified into
173 two types of heterogeneous platforms:
174 \begin{itemize}
175 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
176 \item the platform is only composed of heterogeneous CPUs.
177 \end{itemize}
178
179 For the first type of platform, the computing intensive parallel tasks are
180 executed on the GPUs and the rest are executed on the CPUs.  Luley et
181 al.~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed a
182 heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
183 goal was to maximize the energy efficiency of the platform during computation by
184 maximizing the number of FLOPS per watt generated.
185 In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et
186 al. developed a scheduling algorithm that distributes workloads proportional to
187 the computing power of the nodes which could be a GPU or a CPU. All the tasks
188 must be completed at the same time.  In~\cite{Rong_Effects.of.DVFS.on.K20.GPU},
189 Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
190 DVFS gave better energy and performance efficiency than other clusters only
191 composed of CPUs.
192
193 The work presented in this paper concerns the second type of platform, with
194 heterogeneous CPUs.  Many methods were conceived to reduce the energy
195 consumption of this type of platform.  Naveen et
196 al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
197 minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
198 the sum of slack times that happen during synchronous communications) by
199 dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.
200 Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed an
201 algorithm that divides the executed tasks into two types: the critical and non
202 critical tasks. The algorithm scales down the frequency of non critical tasks
203 proportionally to their slack and communication times while limiting the
204 performance degradation percentage to less than \np[\%]{10}.
205 In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
206 heterogeneous cluster composed of two types of Intel and AMD processors. They
207 use a gradient method to predict the impact of DVFS operations on performance.
208 In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and
209 \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, the best
210 frequencies for a specified heterogeneous cluster are selected offline using
211 some heuristic.  Chen et
212 al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
213 programming approach to minimize the power consumption of heterogeneous servers
214 while respecting given time constraints.  This approach had considerable
215 overhead.  In contrast to the above described papers, this paper presents the
216 following contributions :
217 \begin{enumerate}
218 \item two new energy and performance models for message passing iterative
219   synchronous applications running over a heterogeneous grid platform. Both models
220   take into account communication and slack times. The models can predict the
221   required energy and the execution time of the application.
222
223 \item a new online frequency selecting algorithm for heterogeneous grid
224   platforms. The algorithm has a very small overhead and does not need any
225   training or profiling. It uses a new optimization function which
226   simultaneously maximizes the performance and minimizes the energy consumption
227   of a message passing iterative synchronous application.
228
229 \end{enumerate}
230
231
232
233 \section{The performance and energy consumption measurements on heterogeneous grid architecture}
234 \label{sec.exe}
235
236 \subsection{The execution time of message passing distributed iterative
237   applications on a heterogeneous platform}
238
239 In this paper, we are interested in reducing the energy consumption of message
240 passing distributed iterative synchronous applications running over
241 heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
242 heterogeneous computing clusters interconnected via a long distance network which has lower bandwidth 
243 and higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via high speed network. Therefore, each cluster has different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
244
245 \begin{figure}[!t]
246   \centering
247   \includegraphics[scale=0.6]{fig/commtasks}
248   \caption{Parallel tasks on a heterogeneous platform}
249   \label{fig:heter}
250 \end{figure}
251
252 The overall execution time of a distributed iterative synchronous application 
253 over a heterogeneous grid consists of the sum of the computation time and 
254 the communication time for every iteration on a node. However, due to the
255 heterogeneous computation power of the computing clusters, slack times may occur
256 when fast nodes have to wait, during synchronous communications, for the slower
257 nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
258 overall execution time of the program is the execution time of the slowest task 
259 which has the highest computation time and no slack time.
260
261 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
262 modern processors, that reduces the energy consumption of a CPU by scaling
263 down its voltage and frequency.  Since DVFS lowers the frequency of a CPU
264 and consequently its computing power, the execution time of a program running
265 over that scaled down processor may increase, especially if the program is
266 compute bound.  The frequency reduction process can be  expressed by the scaling
267 factor S which is the ratio between  the maximum and the new frequency of a CPU
268 as in (\ref{eq:s}).
269 \begin{equation}
270   \label{eq:s}
271   S = \frac{\Fmax}{\Fnew}
272 \end{equation}
273 The execution time of a compute bound sequential program is linearly
274 proportional to the frequency scaling factor $S$.  On the other hand, message
275 passing distributed applications consist of two parts: computation and
276 communication.  The execution time of the computation part is linearly
277 proportional to the frequency scaling factor $S$ but the communication time is
278 not affected by the scaling factor because the processors involved remain idle
279 during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  The
280 communication time for a task is the summation of periods of time that begin
281 with an MPI call for sending or receiving a message until the message is
282 synchronously sent or received.
283
284 Since in a heterogeneous grid each cluster has different characteristics,
285 especially different frequency gears, when applying DVFS operations on the nodes 
286 of these clusters, they may get different scaling factors represented by a scaling vector:
287 $(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
288 be able to predict the execution time of message passing synchronous iterative
289 applications running over a heterogeneous grid, for different vectors of
290 scaling factors, the communication time and the computation time for all the
291 tasks must be measured during the first iteration before applying any DVFS
292 operation. Then the execution time for one iteration of the application with any
293 vector of scaling factors can be predicted using (\ref{eq:perf}).
294 \begin{equation}
295   \label{eq:perf}
296   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\TcpOld[ij]} \cdot S_{ij}) 
297   +\mathop{\min_{j=1,\dots,M}}  (\Tcm[hj])
298 \end{equation}
299
300 where $N$ is the number of  clusters in the grid, $M$ is the number of  nodes in
301 each cluster, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
302 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
303 first  iteration. The model computes the maximum computation time with scaling factor 
304 from each node added to the communication time of the slowest node in the slowest cluster $h$.
305 It means only the communication time without any slack time is taken into account.  
306 Therefore, the execution time of the iterative application is equal to
307 the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
308 number of iterations of that application.
309
310 This prediction model is developed from the model to predict the execution time
311 of message passing distributed applications for homogeneous and heterogeneous clusters
312 ~\cite{Our_first_paper,pdsec2015}.  The execution time prediction model is
313 used in the method to optimize both the energy consumption and the performance
314 of iterative methods, which is presented in the following sections.
315
316
317 \subsection{Energy model for heterogeneous grid platform}
318
319 Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
320   Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
321   Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
322 a processor into two power metrics: the static and the dynamic power.  While the
323 first one is consumed as long as the computing unit is turned on, the latter is
324 only consumed during computation times.  The dynamic power $\Pd$ is related to
325 the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
326 and operational frequency $F$, as shown in (\ref{eq:pd}).
327 \begin{equation}
328   \label{eq:pd}
329   \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
330 \end{equation}
331 The static power $\Ps$ captures the leakage power as follows:
332 \begin{equation}
333   \label{eq:ps}
334    \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
335 \end{equation}
336 where V is the supply voltage, $\Ntrans$ is the number of transistors,
337 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
338 technology dependent parameter.  The energy consumed by an individual processor
339 to execute a given program can be computed as:
340 \begin{equation}
341   \label{eq:eind}
342   \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
343 \end{equation}
344 where $T$ is the execution time of the program, $\Tcp$ is the computation
345 time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
346 communication and no slack time.
347
348 The main objective of DVFS operation is to reduce the overall energy
349 consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  The operational
350 frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
351 F$ with some constant $\beta$.~This equation is used to study the change of the
352 dynamic voltage with respect to various frequency values
353 in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction process of the
354 frequency can be expressed by the scaling factor $S$ which is the ratio between
355 the maximum and the new frequency as in (\ref{eq:s}).  The CPU governors are
356 power schemes supplied by the operating system's kernel to lower a core's
357 frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
358 follows:
359 \begin{equation}
360   \label{eq:fnew}
361    \Fnew = S^{-1} \cdot \Fmax
362 \end{equation}
363 Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
364 equation for dynamic power consumption:
365 \begin{multline}
366   \label{eq:pdnew}
367    \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
368    {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
369 \end{multline}
370 where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the
371 new frequency and the maximum frequency respectively.
372
373 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
374 $S^{-3}$ when reducing the frequency by a factor of
375 $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
376 proportional to the frequency of a CPU, the computation time is increased
377 proportionally to $S$.  The new dynamic energy is the dynamic power multiplied
378 by the new time of computation and is given by the following equation:
379 \begin{equation}
380   \label{eq:Edyn}
381    \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp
382 \end{equation}
383 The static power is related to the power leakage of the CPU and is consumed
384 during computation and even when idle. As
385 in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
386 the static power of a processor is considered as constant during idle and
387 computation periods, and for all its available frequencies.  The static energy
388 is the static power multiplied by the execution time of the program.  According
389 to the execution time model in (\ref{eq:perf}), the execution time of the
390 program is the sum of the computation and the communication times. The
391 computation time is linearly related to the frequency scaling factor, while this
392 scaling factor does not affect the communication time.  The static energy of a
393 processor after scaling its frequency is computed as follows:
394 \begin{equation}
395   \label{eq:Estatic}
396   \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
397 \end{equation}
398
399 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
400 different dynamic and static powers from the nodes of the other clusters, 
401 noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Therefore, even if the distributed 
402 message passing iterative application is load balanced, the computation time of each CPU $j$ 
403 in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
404 computed in order to decrease the overall energy consumption of the application
405 and reduce slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
406 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
407 see Figure~\ref{fig:heter}.  Therefore, all nodes do not have equal
408 communication times. While the dynamic energy is computed according to the
409 frequency scaling factor and the dynamic power of each node as in
410 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
411 of one iteration multiplied by the static power of each processor.  The overall
412 energy consumption of a message passing distributed application executed over a
413 heterogeneous grid platform during one iteration is the summation of all dynamic and
414 static energies for $M$ processors in $N$ clusters.  It is computed as follows:
415 \begin{multline}
416   \label{eq:energy}
417  E = \sum_{i=1}^{N} \sum_{i=1}^{M} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
418  \sum_{i=1}^{N} \sum_{j=1}^{M} (\Ps[ij] \cdot {} \\
419   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\Tcp[ij]} \cdot S_{ij}) 
420   +\mathop{\min_{j=1,\dots M}} (\Tcm[hj]) ))
421 \end{multline}
422
423 Reducing the frequencies of the processors according to the vector of scaling
424 factors $(S_{11}, S_{12},\dots, S_{NM})$ may degrade the performance of the application
425 and thus, increase the static energy because the execution time is
426 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
427 for the iterative application can be measured by measuring the energy
428 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
429 of iterations of that application.
430
431 \section{Optimization of both energy consumption and performance}
432 \label{sec.compet}
433
434 Using the lowest frequency for each processor does not necessarily give the most
435 energy efficient execution of an application. Indeed, even though the dynamic
436 power is reduced while scaling down the frequency of a processor, its
437 computation power is proportionally decreased. Hence, the execution time might
438 be drastically increased and during that time, dynamic and static powers are
439 being consumed.  Therefore, it might cancel any gains achieved by scaling down
440 the frequency of all nodes to the minimum and the overall energy consumption of
441 the application might not be the optimal one.  It is not trivial to select the
442 appropriate frequency scaling factor for each processor while considering the
443 characteristics of each processor (computation power, range of frequencies,
444 dynamic and static powers) and the task executed (computation/communication
445 ratio). The aim being to reduce the overall energy consumption and to avoid
446 increasing significantly the execution time.  In our previous
447 work~\cite{Our_first_paper,pdsec2015}, we proposed a method that selects the optimal
448 frequency scaling factor for a homogeneous and heterogeneous clusters executing a message passing
449 iterative synchronous application while giving the best trade-off between the
450 energy consumption and the performance for such applications.  In this work we
451 are interested in heterogeneous grid as described above.  Due to the
452 heterogeneity of the processors, a vector of scaling factors should be selected
453 and it must give the best trade-off between energy consumption and performance.
454
455 The relation between the energy consumption and the execution time for an
456 application is complex and nonlinear, Thus, unlike the relation between the
457 execution time and the scaling factor, the relation between the energy and the
458 frequency scaling factors is nonlinear, for more details refer
459 to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  Moreover, these relations
460 are not measured using the same metric.  To solve this problem, the execution
461 time is normalized by computing the ratio between the new execution time (after
462 scaling down the frequencies of some processors) and the initial one (with
463 maximum frequency for all nodes) as follows:
464 \begin{equation}
465   \label{eq:pnorm}
466   \Pnorm = \frac{\Tnew}{\Told}                 
467 \end{equation}
468
469
470 Where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told})
471 \begin{equation}
472   \label{eq:told}
473    \Told = \mathop{\max_{i=1,2,\dots,N}}_{j=1,2,\dots,M} (\Tcp[ij]+\Tcm[ij])             
474 \end{equation}
475 In the same way, the energy is normalized by computing the ratio between the
476 consumed energy while scaling down the frequency and the consumed energy with
477 maximum frequency for all  nodes:
478 \begin{equation}
479   \label{eq:enorm}
480   \Enorm = \frac{\Ereduced}{\Eoriginal} 
481 \end{equation}
482
483 Where $\Ereduced$  is computed using (\ref{eq:energy}) and $\Eoriginal$ is 
484 computed as in (\ref{eq:eorginal}).
485
486
487 \begin{equation}
488   \label{eq:eorginal}
489     \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M} ( \Pd[ij] \cdot  \Tcp[ij])  + 
490      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M} (\Ps[ij] \cdot \Told)       
491 \end{equation}
492
493 While the main goal is to optimize the energy and execution time at the same
494 time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. 
495 According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
496 vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
497 and the execution time simultaneously.  But the main objective is to produce
498 maximum energy reduction with minimum execution time reduction.
499
500 This problem can be solved by making the optimization process for energy and
501 execution time follow the same evolution according to the vector of scaling factors
502 $(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
503 normalized execution time is inverted which gives the normalized performance
504 equation, as follows:
505 \begin{equation}
506   \label{eq:pnorm_inv}
507   \Pnorm = \frac{\Told}{\Tnew}          
508 \end{equation}
509
510 \begin{figure}[!t]
511   \centering
512   \subfloat[Homogeneous cluster]{%
513     \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
514
515   \subfloat[Heterogeneous grid]{%
516     \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
517   \label{fig:rel}
518   \caption{The energy and performance relation}
519 \end{figure}
520
521 Then, the objective function can be modeled in order to find the maximum
522 distance between the energy curve (\ref{eq:enorm}) and the performance curve
523 (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
524 represents the minimum energy consumption with minimum execution time (maximum
525 performance) at the same time, see Figure~\ref{fig:r1} or
526 Figure~\ref{fig:r2}. Then the objective function has the following form:
527 \begin{equation}
528   \label{eq:max}
529   \MaxDist =
530 \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}}_{k=1,\dots,F}
531       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
532        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
533 \end{equation}
534 where $N$ is the number of clusters, $M$ is the number of nodes in each cluster and
535 $F$ is the number of available frequencies for each node.  Then, the optimal set 
536 of scaling factors that satisfies (\ref{eq:max}) can be selected.  
537 The objective function can work with any energy model or any power 
538 values for each node (static and dynamic powers). However, the most important 
539 energy reduction gain can be achieved when the energy curve has a convex form as shown 
540 in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
541
542 \section{The scaling factors selection algorithm for  grids }
543 \label{sec.optim}
544
545 \begin{algorithm}
546   \begin{algorithmic}[1]
547     % \footnotesize
548     \Require ~
549     \begin{description}
550     \item [{$N$}] number of clusters in the grid.
551     \item [{$M$}] number of nodes in each cluster.
552     \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
553     \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
554     \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
555     \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
556     \item[{$\Ps[ij]$}] array of the static powers for all nodes.
557     \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
558     \end{description}
559     \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$,  a vector of scaling factors that gives the optimal tradeoff between energy consumption and execution time
560
561     \State $\Scp[ij] \gets \frac{\max_{i=1,2,\dots,N}(\max_{j=1,2,\dots,M_i}(\Tcp[ij]))}{\Tcp[ij]} $
562     \State $F_{ij} \gets  \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
563     \State Round the computed initial frequencies $F_i$ to the closest  available frequency for each node.
564     \If{(not the first frequency)}
565           \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
566     \EndIf
567     \State $\Told \gets $ computed as in equations (\ref{eq:told}).
568     \State $\Eoriginal \gets $ computed as in equations (\ref{eq:eorginal}) .
569     \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
570     \State $\Dist \gets 0 $
571     \While {(all nodes have not reached their  minimum   \newline\hspace*{2.5em} frequency \textbf{or}  $\Pnorm - \Enorm < 0 $)}
572         \If{(not the last freq. \textbf{and} not the slowest node)}
573         \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
574         \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
575         \EndIf
576        \State $\Tnew \gets $ computed as  in equations (\ref{eq:perf}). 
577        \State $\Ereduced \gets $ computed as  in equations (\ref{eq:energy}). 
578        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
579        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
580       \If{$(\Pnorm - \Enorm > \Dist)$}
581         \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i. $
582         \State $\Dist \gets \Pnorm - \Enorm$
583       \EndIf
584     \EndWhile
585     \State  Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
586   \end{algorithmic}
587   \caption{Scaling factors selection algorithm}
588   \label{HSA}
589 \end{algorithm}
590
591 \begin{algorithm}
592   \begin{algorithmic}[1]
593     % \footnotesize
594     \For {$k=1$ to \textit{some iterations}}
595       \State Computations section.
596       \State Communications section.
597       \If {$(k=1)$}
598         \State Gather all times of computation and\newline\hspace*{3em}%
599                communication from each node.
600         \State Call Algorithm \ref{HSA}.
601         \State Compute the new frequencies from the\newline\hspace*{3em}%
602                returned optimal scaling factors.
603         \State Set the new frequencies to nodes.
604       \EndIf
605     \EndFor
606   \end{algorithmic}
607   \caption{DVFS algorithm}
608   \label{dvfs}
609 \end{algorithm}
610
611
612 In this section, the scaling factors selection algorithm for  grids, algorithm~\ref{HSA}, is presented. It selects the vector of the frequency
613 scaling factors  that gives the best trade-off between minimizing the
614 energy consumption and maximizing the performance of a message passing
615 synchronous iterative application executed on a  grid. It works
616 online during the execution time of the iterative message passing program.  It
617 uses information gathered during the first iteration such as the computation
618 time and the communication time in one iteration for each node. The algorithm is
619 executed after the first iteration and returns a vector of optimal frequency
620 scaling factors that satisfies the objective function (\ref{eq:max}). The
621 program applies DVFS operations to change the frequencies of the CPUs according
622 to the computed scaling factors.  This algorithm is called just once during the
623 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
624 scaling algorithm is called in the iterative MPI program.
625
626 \begin{figure}[!t]
627   \centering
628   \includegraphics[scale=0.45]{fig/init_freq}
629   \caption{Selecting the initial frequencies}
630   \label{fig:st_freq}
631 \end{figure}
632
633 Nodes from distinct clusters in a grid have different computing powers, thus
634 while executing message passing iterative synchronous applications, fast nodes
635 have to wait for the slower ones to finish their computations before being able
636 to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
637 periods are called idle or slack times.  The algorithm takes into account this
638 problem and tries to reduce these slack times when selecting the vector of the frequency
639 scaling factors. At first, it selects initial frequency scaling factors
640 that increase the execution times of fast nodes and minimize the differences
641 between the computation times of fast and slow nodes. The value of the initial
642 frequency scaling factor for each node is inversely proportional to its
643 computation time that was gathered from the first iteration. These initial
644 frequency scaling factors are computed as a ratio between the computation time
645 of the slowest node and the computation time of the node $i$ as follows:
646 \begin{equation}
647   \label{eq:Scp}
648   \Scp[ij] =  \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]}
649 \end{equation}
650 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
651 algorithm computes the initial frequencies for all nodes as a ratio between the
652 maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
653 follows:
654 \begin{equation}
655   \label{eq:Fint}
656   F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M}
657 \end{equation}
658 If the computed initial frequency for a node is not available in the gears of
659 that node, it is replaced by the nearest available frequency.  In
660 Figure~\ref{fig:st_freq}, the nodes are sorted by their computing powers in
661 ascending order and the frequencies of the faster nodes are scaled down
662 according to the computed initial frequency scaling factors.  The resulting new
663 frequencies are highlighted in Figure~\ref{fig:st_freq}.  This set of
664 frequencies can be considered as a higher bound for the search space of the
665 optimal vector of frequencies because selecting higher frequencies
666 than the higher bound will not improve the performance of the application and it
667 will increase its overall energy consumption.  Therefore the algorithm that
668 selects the frequency scaling factors starts the search method from these
669 initial frequencies and takes a downward search direction toward lower
670 frequencies until reaching the nodes' minimum frequencies or lower bounds. A node's frequency is considered its lower bound if the computed distance between the energy and performance at this frequency is less than zero.
671 A negative distance means that the performance degradation ratio is higher than the energy saving ratio.
672 In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances. 
673
674 Therefore, the algorithm iterates on all remaining frequencies, from the higher
675 bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
676 energy consumption and performance and selects the optimal vector of the frequency scaling
677 factors. At each iteration the algorithm determines the slowest node
678 according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
679 while it lowers the frequency of all other nodes by one gear.  The new overall
680 energy consumption and execution time are computed according to the new scaling
681 factors.  The optimal set of frequency scaling factors is the set that gives the
682 highest distance according to the objective function (\ref{eq:max}).
683
684 Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
685 consumed energy for an application running on a homogeneous cluster and a
686  grid platform respectively while increasing the scaling factors. It can
687 be noticed that in a homogeneous cluster the search for the optimal scaling
688 factor should start from the maximum frequency because the performance and the
689 consumed energy decrease from the beginning of the plot. On the other hand, in
690 the  grid platform the performance is maintained at the beginning of the
691 plot even if the frequencies of the faster nodes decrease until the computing
692 power of scaled down nodes are lower than the slowest node. In other words,
693 until they reach the higher bound. It can also be noticed that the higher the
694 difference between the faster nodes and the slower nodes is, the bigger the
695 maximum distance between the energy curve and the performance curve is, which results in bigger energy savings. 
696
697
698 \section{Experimental results}
699 \label{sec.expe}
700 While in~\cite{pdsec2015} the energy  model and the scaling factors selection algorithm were applied to a heterogeneous cluster and  evaluated over the SimGrid simulator~\cite{SimGrid}, 
701 in this paper real experiments were conducted over the grid'5000 platform. 
702
703 \subsection{Grid'5000 architature and power consumption}
704 \label{sec.grid5000}
705 Grid'5000~\cite{grid5000} is a large-scale testbed that consists of ten sites distributed over all metropolitan France and Luxembourg. All the sites are connected together via         a special long distance network called RENATER,
706 which is the French National Telecommunication Network for Technology.
707 Each site of the grid is composed of few heterogeneous 
708 computing clusters and each cluster contains many homogeneous nodes. In total,
709 grid'5000 has about  one thousand heterogeneous nodes and eight thousand cores.  In each site,
710 the clusters and their nodes are connected via  high speed local area networks. 
711 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
712
713 Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture 
714 the power consumption  for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ...  For more details refer to
715 \cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$, 
716  firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $\Pmax[jx]$. The difference between the two measured power consumption represents the 
717 dynamic power consumption of that core with the maximum frequency, see  figure(\ref{fig:power_cons}). 
718
719
720 The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
721 \begin{equation}
722   \label{eq:pdyn}
723     \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (\Pmax[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
724 \end{equation}
725
726 where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
727 $\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured maximum power values, 
728 $\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
729 Therefore, the dynamic power of one core is computed as the difference between the maximum 
730 measured value in maximum powers vector and the minimum measured value in the idle powers vector.
731
732 On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed as  20\% of dynamic power consumption of the core.
733
734 In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
735
736 Four clusters from the two sites were selected in the experiments: one cluster from 
737 Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene, 
738 Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
739 frequency ranges and local network features: the bandwidth and the latency.  Table \ref{table:grid5000} shows 
740 the details characteristics of these four clusters. Moreover, the dynamic powers were computed  using the equation (\ref{eq:pdyn}) for all the nodes in the 
741 selected clusters and are presented in table  \ref{table:grid5000}.
742
743
744 \begin{figure}[!t]
745   \centering
746   \includegraphics[scale=1]{fig/grid5000}
747   \caption{The selected two sites of grid'5000}
748   \label{fig:grid5000}
749 \end{figure}
750
751 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
752 The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
753 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections. 
754
755
756
757
758 \begin{figure}[!t]
759   \centering
760   \includegraphics[scale=0.6]{fig/power_consumption.pdf}
761   \caption{The power consumption by one core from Taurus cluster}
762   \label{fig:power_cons}
763 \end{figure}
764
765
766
767   
768 \begin{table}[!t]
769   \caption{CPUs characteristics of the selected clusters}
770   % title of Table
771   \centering
772   \begin{tabular}{|*{7}{c|}}
773     \hline
774     Cluster     & CPU         & Max   & Min   & Diff. & no. of cores    & dynamic power   \\
775     Name        & model       & Freq. & Freq. & Freq. & per CPU         & of one core     \\
776                 &             & GHz   & GHz   & GHz   &                 &           \\
777     \hline
778     Taurus      & Intel       & 2.3  & 1.2  & 0.1     & 6               & \np[W]{35} \\
779                 & Xeon        &       &       &       &                 &            \\
780                 & E5-2630     &       &       &       &                 &            \\         
781     \hline
782     Graphene    & Intel       & 2.53  & 1.2   & 0.133 & 4               & \np[W]{23} \\
783                 & Xeon        &       &       &       &                 &            \\
784                 & X3440       &       &       &       &                 &            \\    
785     \hline
786     Griffon     & Intel       & 2.5   & 2     & 0.5   & 4               & \np[W]{46} \\
787                 & Xeon        &       &       &       &                 &            \\
788                 & L5420       &       &       &       &                 &            \\  
789     \hline
790     Graphite    & Intel       & 2     & 1.2   & 0.1   & 8               & \np[W]{35} \\
791                 & Xeon        &       &       &       &                 &            \\
792                 & E5-2650     &       &       &       &                 &            \\  
793     \hline
794   \end{tabular}
795   \label{table:grid5000}
796 \end{table} 
797
798
799
800 \subsection{The experimental results of the scaling algorithm}
801 \label{sec.res}
802 In this section, the results of the application of the scaling factors selection algorithm \ref{HSA} 
803 to the NAS parallel benchmarks are presented. 
804
805 As mentioned previously, the experiments 
806 were conducted over two sites of grid'5000,  Lyon and Nancy sites. 
807 Two scenarios were considered while selecting the clusters from these two sites :
808 \begin{itemize}
809 \item In the first scenario, nodes from two sites and three heterogeneous clusters were selected. The two sites are connected 
810  via a long distance network.
811 \item In the second scenario nodes from three clusters that are located in one site, Nancy site.  
812 \end{itemize}
813
814 The main reason 
815 behind using these two scenarios is to evaluate the influence of long distance communications (higher latency) on the performance of the 
816 scaling factors selection algorithm. Indeed, in the first scenario the computations to communications ratio 
817 is very low due to the higher communication times which reduces the effect of DVFS operations.
818
819 The NAS parallel benchmarks are executed over 
820 16 and 32 nodes for each scenario. The number of participating computing nodes form each cluster 
821 are different because all the selected clusters do not have the same available number of nodes and all benchmarks do not require the same number of computing nodes.
822 Table \ref{tab:sc} shows the number of nodes used from each cluster for each scenario. 
823
824 \begin{table}[h]
825
826 \caption{The different clusters scenarios}
827 \centering
828 \begin{tabular}{|*{4}{c|}}
829 \hline
830 \multirow{2}{*}{Scenario name}        & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} 
831                                       & Cluster & Site           & No. of  nodes     \\ 
832 \hline
833 \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon                & 5                      \\ \cline{2-4} 
834                                       & Graphene  & Nancy             & 5                      \\ \cline{2-4} 
835                                       & Griffon       & Nancy        & 6                      \\ 
836 \hline
837 \multirow{3}{*}{Tow sites / 32 nodes} & Taurus  & Lyon               & 10                     \\ \cline{2-4} 
838                                       & Graphene  & Nancy             & 10                     \\ \cline{2-4} 
839                                       & Griffon     &Nancy           & 12                     \\ 
840 \hline
841 \multirow{3}{*}{One site / 16 nodes}  & Graphite    & Nancy            & 4                      \\ \cline{2-4} 
842                                       & Graphene     & Nancy           & 6                      \\ \cline{2-4} 
843                                       & Griffon         & Nancy        & 6                      \\ 
844 \hline
845 \multirow{3}{*}{One site / 32 nodes}  & Graphite   & Nancy             & 4                      \\ \cline{2-4} 
846                                       & Graphene      & Nancy          & 12                     \\ \cline{2-4} 
847                                       & Griffon          & Nancy       & 12                       \\ 
848 \hline
849 \end{tabular}
850  \label{tab:sc}
851 \end{table}
852
853 \begin{figure}
854   \centering
855   \includegraphics[scale=0.5]{fig/eng_con_scenarios.eps}
856   \caption{The energy consumptions of NAS benchmarks over different scenarios }
857   \label{fig:eng_sen}
858 \end{figure}
859
860
861
862 \begin{figure}
863   \centering
864   \includegraphics[scale=0.5]{fig/time_scenarios.eps}
865   \caption{The execution times of NAS benchmarks over different scenarios }
866   \label{fig:time_sen}
867 \end{figure}
868
869 The NAS parallel benchmarks are executed over these two platforms
870  with different number of nodes, as in Table \ref{tab:sc}. 
871 The overall energy consumption of all the benchmarks solving the class D instance and
872 using the proposed frequency selection algorithm is measured 
873 using the equation of the reduced energy consumption, equation 
874 (\ref{eq:energy}). This model uses the measured dynamic and static 
875 power values  showed in Table \ref{table:grid5000}. The execution
876 time is measured for all the benchmarks over these different scenarios.  
877
878 The energy consumptions  and the execution times for all the benchmarks are 
879 presented in the plots \ref{fig:eng_sen} and \ref{fig:time_sen} respectively. 
880
881 For the majority of the benchmarks, the energy consumed while executing  the NAS benchmarks over one site scenario 
882 for  16 and 32 nodes is lower than the energy consumed while using two sites. 
883 The long distance communications between the two distributed sites increase the idle time, which leads to more static energy consumption. 
884
885 The execution times of these benchmarks 
886 over one site with 16 and 32 nodes are also lower when  compared to those of the  two sites 
887 scenario. Moreover, most of the benchmarks running over the one site scenario their execution times  are approximately divided by two  when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).  
888
889 However, the  execution times and the energy consumptions of EP and MG benchmarks, which have no or small communications, are not significantly affected 
890  in both scenarios. Even when the number of nodes is doubled. On the other hand, the communications of the rest of the benchmarks increases when using long distance communications between two sites or increasing the number of computing nodes.
891
892 \begin{figure}
893   \centering
894   \includegraphics[scale=0.5]{fig/eng_s.eps}
895   \caption{The energy saving of NAS benchmarks over different scenarios }
896   \label{fig:eng_s}
897 \end{figure}
898
899
900 \begin{figure}
901   \centering
902   \includegraphics[scale=0.5]{fig/per_d.eps}
903   \caption{The performance degradation of NAS benchmarks over different scenarios }
904   \label{fig:per_d}
905 \end{figure}
906
907
908 \begin{figure}
909   \centering
910   \includegraphics[scale=0.5]{fig/dist.eps}
911   \caption{The tradeoff distance of NAS benchmarks over different scenarios }
912   \label{fig:dist}
913 \end{figure}
914
915 The energy saving percentage is computed as the ratio between the reduced 
916 energy consumption, equation (\ref{eq:energy}), and the original energy consumption,
917 equation (\ref{eq:eorginal}), for all benchmarks as in figure \ref{fig:eng_s}. 
918 This figure shows that the energy saving percentages of one site scenario for
919 16 and 32 nodes are bigger than those of the two sites scenario which is due
920 to the higher  computations to communications ratio in the first scenario   
921 than in the second one. Moreover, the frequency selecting algorithm selects smaller frequencies when the computations times are bigger than the communication times which 
922 results in  a lower energy consumption. Indeed, the dynamic  consumed power
923 is exponentially related to the CPU's frequency value. On the other side, the increase in the number of computing nodes can 
924 increase the communication times and thus produces less energy saving depending on the 
925 benchmarks being executed. The results of the benchmarks CG, MG, BT and FT show more 
926 energy saving percentage in one site scenario when executed over 16 nodes comparing to 32 nodes. While, LU and SP consume more energy with 16 nodes than 32 in one site  because their computations to communications ratio is not affected by the increase of the number of local communications. 
927
928
929 The energy saving percentage is reduced for all the benchmarks because of the long distance communications in the two sites 
930 scenario, except for the   EP benchmark which has  no communications. Therefore, the energy saving percentage of this benchmark is 
931 dependent on the maximum difference between the computing powers of the heterogeneous computing nodes, for example 
932 in the one site scenario, the graphite cluster is selected but in the two sits scenario 
933 this cluster is replaced with Taurus cluster which is more powerful. 
934 Therefore, the energy saving of EP benchmarks are bigger in the two sites scenario due 
935 to the higher maximum difference between the computing powers of the nodes. 
936
937 In fact, high differences between the nodes' computing powers make the proposed frequencies selecting  
938 algorithm  select smaller frequencies for the powerful nodes which 
939 produces less energy consumption and thus more energy saving.
940 The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%.
941
942
943 Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios.
944 The performance degradation percentage for the benchmarks running on two sites  with
945 16 or 32  nodes is on average equal to 8\% or 4\% respectively. 
946 For this scenario, the proposed scaling algorithm selects smaller frequencies for the executions with 32 nodes  without significantly degrading their performance because the communication times are higher with 32 nodes which results in smaller  computations to communications ratio.  On the other hand, the performance degradation percentage  for the benchmarks running  on one site  with
947 16 or 32  nodes is on average equal to 3\% or 10\% respectively. In opposition to the two sites scenario, when the number of computing nodes is increased in the one site scenario, the performance degradation percentage is increased. Therefore, doubling the number of computing 
948 nodes when the communications occur in high speed network does not decrease the computations to 
949 communication ratio. 
950
951 The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to 
952 the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its 
953 performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes.
954 The rest of the benchmarks showed different performance degradation percentages, which decrease
955 when the communication times increase and vice versa.
956
957 Figure \ref{fig:dist} presents the  distance percentage between the energy saving  and the performance degradation for each benchmark  over both  scenarios. The tradeoff distance percentage can be 
958 computed as in equation \ref{eq:max}. The one site scenario with 16 nodes gives the best energy and performance 
959 tradeoff, on average it is equal to  26\%. The one site scenario using both 16 and 32 nodes had better energy and performance 
960 tradeoff comparing to the two sites scenario  because the former has high speed local communications 
961 which increase the computations to communications ratio  and the latter uses long distance communications which decrease this ratio. 
962
963
964  Finally, the best energy and performance tradeoff depends on all of the following:
965 1) the computations to communications ratio when there are  communications and slack times, 2) the heterogeneity of the computing powers of the nodes and 3) the heterogeneity of the consumed  static and dynamic powers of the nodes.
966
967
968
969
970 \subsection{The experimental results of multi-cores clusters}
971 \label{sec.res-mc}
972 The  clusters of grid'5000 have different number of cores embedded in their nodes
973 as shown in Table \ref{table:grid5000}. The cores of each node can exchange 
974 data via the shared memory \cite{rauber_book}. In 
975 this section, the proposed scaling algorithm is evaluated over the grid'5000 grid while using multi-core nodes 
976 selected according to the two  platform scenarios described in the section \ref{sec.res}.
977 The two platform scenarios, the two sites and one site scenarios, use  32 
978 cores from multi-cores nodes instead of 32 distinct nodes. For example if 
979 the participating number of cores from a certain cluster is equal to 12, 
980 in the multi-core scenario the selected nodes is equal to 3 nodes while using 
981 4 cores from each node. The platforms with one  
982 core per node and  multi-cores nodes are  shown in Table \ref{table:sen-mc}. 
983 The energy consumptions and execution times of running the NAS parallel 
984 benchmarks, class D, over these four different scenarios are presented 
985 in the figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.
986
987 The execution times for most of  the NAS  benchmarks are higher over the one site multi-cores per node scenario 
988  than the execution time of those running over one site single core per node  scenario. Indeed,  
989    the communication times  are higher in the one site multi-cores scenario than in the latter scenario because all the cores of a node  share  the same node network link which can be  saturated when running communication bound applications. 
990    
991  \textcolor{blue}{On the other hand,  the execution times for most of the NAS benchmarks  are lower over 
992 the two sites  multi-cores scenario than those over the two sites one core scenario.   ???????
993 }
994
995 The experiments showed that for most of the NAS benchmarks and between the four scenarios,  
996 the one site one core scenario gives the best execution times because the communication times are the lowest. 
997 Indeed, in this scenario each core has a dedicated network link and all the communications are local.  
998 Moreover, the energy consumptions of the NAS benchmarks are lower over the 
999 one site one core scenario  than over the one site multi-cores scenario because 
1000 the first scenario had less execution time than the latter which results in less static energy being consumed.
1001
1002 The computations to communications ratios of the NAS benchmarks are higher over 
1003 the one site one core scenario  when compared to the ratios of the other scenarios. 
1004 More energy reduction was achieved when this ratio is increased because the proposed scaling algorithm selects smaller frequencies that decrease the dynamic power consumption. 
1005
1006   \textcolor{blue}{ Whereas, the energy consumption in the two sites one core scenario is higher than the energy consumption of the two sites multi-core scenario. This is according to the increase in the execution time of the two sites one core scenario. }
1007
1008
1009 These experiments also showed that the energy 
1010 consumption and the execution times of the EP and MG benchmarks do not change significantly over these four 
1011 scenarios  because there are no or small communications,  
1012 which could increase or decrease the static power consumptions. Contrary to EP and MG, the  energy consumptions 
1013 and the execution times of the rest of the  benchmarks  vary according to the  communication times that are different from one scenario to the other.
1014
1015
1016 The energy saving percentages of all NAS benchmarks running over these four scenarios are presented in the figure \ref{fig:eng-s-mc}. It shows that  the energy saving percentages   over the two sites multi-cores scenario 
1017 and over the two sites one core scenario are on average  equal to 22\% and 18\%
1018 respectively. The energy saving percentages   are higher in the former scenario because  its computations to communications  ratio is higher than the ratio of the latter scenario  as mentioned previously.
1019
1020 In contrast, in the one site one 
1021 core and one site multi-cores scenarios the energy saving percentages 
1022 are approximately equivalent, on average they are up to 25\%. In both scenarios there 
1023 are a small difference  in the computations to communications ratios, which leads 
1024 the proposed scaling algorithm to select similar frequencies for both scenarios.  
1025
1026 The performance degradation percentages of the NAS benchmarks are presented in
1027 figure \ref{fig:per-d-mc}. It shows that the performance degradation percentages for the NAS benchmarks are higher over the two sites 
1028 multi-cores scenario than over the  two sites  one core scenario, equal on average to 7\% and 4\% respectively. 
1029 Moreover, using the two sites multi-cores scenario increased 
1030 the computations to communications ratio, which may increase 
1031 the overall execution time  when the proposed scaling algorithm is applied and the frequencies scaled down.  
1032
1033
1034 When the benchmarks are executed  over the one 
1035 site one core scenario, their performance degradation percentages are equal  on average
1036 to 10\% and are higher than those executed over the one site multi-cores scenario, 
1037 which on average is equal to 7\%. 
1038
1039 \textcolor{blue}{
1040 The performance degradation percentages over one site multi-cores is lower because  the computations to communications ratio is decreased. Therefore, selecting small 
1041 frequencies by the scaling algorithm are proportional to this ratio, and thus the execution time do not increase significantly.}
1042
1043
1044 The tradeoff distance percentages of the NAS 
1045 benchmarks over all scenarios are presented in the figure \ref{fig:dist-mc}.
1046 These  tradeoff distance percentages are used to verify which scenario is the best in terms of energy reduction and performance. The figure shows that using muti-cores in both of the one site and two sites scenarios gives bigger  tradeoff distance percentages, on overage equal to 17.6\% and 15.3\% respectively, than using one core per node in both of one site and two sites scenarios,  on average  equal to 14.7\% and 13.3\% respectively. 
1047
1048 \begin{table}[]
1049 \centering
1050 \caption{The multicores scenarios}
1051
1052 \begin{tabular}{|*{4}{c|}}
1053 \hline
1054 Scenario name                          & Cluster name & \begin{tabular}[c]{@{}c@{}}No. of  nodes\\ in each cluster\end{tabular} & 
1055                                        \begin{tabular}[c]{@{}c@{}}No. of  cores\\ for each node\end{tabular}  \\ \hline
1056 \multirow{3}{*}{Two sites/ one core}   & Taurus       & 10              & 1                   \\ \cline{2-4}
1057                                        & Graphene     & 10              & 1                   \\ \cline{2-4}
1058                                        & Griffon      & 12              & 1                   \\ \hline
1059 \multirow{3}{*}{Two sites/ multicores} & Taurus       & 3               & 3 or 4              \\ \cline{2-4}
1060                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
1061                                        & Griffon      & 3               & 4                   \\ \hline
1062 \multirow{3}{*}{One site/ one core}    & Graphite     & 4               & 1                   \\  \cline{2-4}
1063                                        & Graphene     & 12              & 1                   \\  \cline{2-4}
1064                                        & Griffon      & 12              & 1                   \\ \hline
1065 \multirow{3}{*}{One site/ multicores}  & Graphite     & 3               & 3 or 4              \\  \cline{2-4}
1066                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
1067                                        & Griffon      & 3               & 4                   \\ \hline
1068 \end{tabular}
1069 \label{table:sen-mc}
1070 \end{table}
1071
1072 \begin{figure}
1073   \centering
1074   \includegraphics[scale=0.5]{fig/eng_con.eps}
1075   \caption{Comparing the  energy consumptions of running NAS benchmarks over one core and multicores scenarios }
1076   \label{fig:eng-cons-mc}
1077 \end{figure}
1078
1079
1080   \begin{figure}
1081   \centering
1082   \includegraphics[scale=0.5]{fig/time.eps}
1083   \caption{Comparing the  execution times of running NAS benchmarks over one core and multicores scenarios }
1084   \label{fig:time-mc}
1085 \end{figure}
1086
1087  \begin{figure}
1088   \centering
1089   \includegraphics[scale=0.5]{fig/eng_s_mc.eps}
1090   \caption{The energy saving of running NAS benchmarks over one core and multicores scenarios }
1091   \label{fig:eng-s-mc}
1092 \end{figure}
1093
1094 \begin{figure}
1095   \centering
1096   \includegraphics[scale=0.5]{fig/per_d_mc.eps}
1097   \caption{The performance degradation of running NAS benchmarks over one core and multicores scenarios }
1098   \label{fig:per-d-mc}
1099 \end{figure}
1100
1101 \begin{figure}
1102   \centering
1103   \includegraphics[scale=0.5]{fig/dist_mc.eps}
1104   \caption{The tradeoff distance of running NAS benchmarks over one core and multicores scenarios }
1105   \label{fig:dist-mc}
1106 \end{figure}
1107
1108 \subsection{Experiments with different static and dynamic powers consumption scenarios}
1109 \label{sec.pow_sen}
1110
1111 In section \ref{sec.grid5000}, since it was not possible to measure the static power consumed by a CPU,   the static power was assumed to be equal to 20\% of the measured dynamic power. This power is consumed during the whole execution time, during computation and communication times. Therefore, when the DVFS operations are applied by the scaling algorithm and the CPUs' frequencies lowered, the execution time might increase and consequently the consumed static energy will be increased too. 
1112
1113 The aim of  this section is to evaluate the scaling algorithm while assuming different values of static powers. 
1114 In addition to the previously used  percentage of static power, two new static power ratios,  10\% and 30\% of the measured dynamic power of the core, are used in this section.
1115 The experiments have been executed with these two new static power scenarios  over the one site one core per node scenario.
1116 In these experiments, the class D of the NAS parallel benchmarks are executed over Nancy's site. 16 computing nodes from the three clusters, Graphite, Graphene and Griffon, where used in this experiment.  
1117
1118  \begin{figure}
1119   \centering
1120   \includegraphics[scale=0.5]{fig/eng_pow.eps}
1121   \caption{The energy saving percentages for NAS benchmarks of the three power scenario}
1122   \label{fig:eng-pow}
1123 \end{figure}
1124
1125 \begin{figure}
1126   \centering
1127   \includegraphics[scale=0.5]{fig/per_pow.eps}
1128   \caption{The performance degradation percentages for NAS benchmarks of the three power scenario}
1129   \label{fig:per-pow}
1130 \end{figure}
1131
1132
1133 \begin{figure}
1134   \centering
1135   \includegraphics[scale=0.5]{fig/dist_pow.eps}
1136   \caption{The tradeoff distance for NAS benchmarks of the three power scenario}
1137   \label{fig:dist-pow}
1138 \end{figure}
1139
1140 \begin{figure}
1141   \centering
1142   \includegraphics[scale=0.47]{fig/three_scenarios.pdf}
1143   \caption{Comparing the selected frequency scaling factors of MG benchmark for three static power scenarios}
1144   \label{fig:fre-pow}
1145 \end{figure}
1146
1147
1148 The energy saving percentages of the NAS benchmarks with the three static power scenarios are presented 
1149 in figure \ref{fig:eng_sen}. This figure shows that the  10\% of static power scenario 
1150 gives the biggest energy saving percentages in comparison to the 20\% and 30\% static power 
1151 scenarios. The small value of the static power consumption makes the proposed 
1152 scaling algorithm  select smaller frequencies for the CPUs. 
1153 These smaller frequencies reduce the dynamic energy consumption more than increasing the consumed static energy which gives             less overall energy consumption. 
1154 The energy saving percentages of the 30\% static power scenario is the smallest between the other scenarios, because the scaling algorithm selects bigger frequencies for the CPUs which increases the energy consumption. Figure \ref{fig:fre-pow} demonstrates that the proposed scaling algorithm selects   the best frequency scaling factors   according to the static power consumption ratio being used.
1155
1156 The performance degradation percentages are presented in the figure \ref{fig:per-pow}.
1157 The 30\% static power scenario had less performance degradation percentage  because the scaling algorithm
1158 had  selected big frequencies for the CPUs. While, 
1159 the inverse happens in the 10\% and 20\% scenarios because the scaling algorithm had selected  CPUs' frequencies smaller than those of the 30\% scenario. The tradeoff distance percentage for the NAS benchmarks with these three static power scenarios 
1160 are presented in the figure \ref{fig:dist}. 
1161 It shows that the best  tradeoff
1162 distance percentage is obtained with  the  10\% static power scenario  and this percentage 
1163 is decreased for the other two scenarios because the scaling algorithm had selected different frequencies according to the static power values.
1164
1165 In the EP benchmark, the energy saving, performance degradation and tradeoff 
1166 distance percentages for the these static power scenarios are not significantly different because there is no communication in this benchmark. Therefore, the static power is only consumed during computation and   the proposed scaling algorithm selects similar frequencies for the three scenarios.  On the other hand,  for the rest of the benchmarks,  the scaling algorithm  selects  the values of the frequencies according to the communication times of each benchmark because the static energy consumption increases  proportionally to the  communication times. 
1167
1168
1169  
1170 \subsection{The comparison between the proposed frequencies selecting algorithm and the energy and delay product algorithm}
1171 \label{sec.compare_EDP}
1172
1173 Finding the frequencies that gives the best tradeoff between the energy consumption and the performance for a parallel 
1174 application is not a trivial task.  Many algorithms have been proposed to tackle this problem.  
1175 In this section, the proposed frequencies selecting algorithm is compared to well known  energy and delay product method, $EDP=energy \times delay$, that have been used by many researchers  \cite{EDP_for_multi_processors,Energy_aware_application_scheduling,Exploring_Energy_Performance_TradeOffs}. 
1176 This method  was also used by Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS} where they select the frequencies that minimize the EDP product and apply them with DVFS operations to  the multi-cores 
1177 architecture. Their online algorithm predicts the energy consumption and execution time of a processor before using the EDP method.
1178
1179 To fairly compare the proposed frequencies scaling algorithm to  Spiliopoulos et al. algorithm, called Maxdist and EDP respectively, both algorithms use the same energy model,  equation \ref{eq:energy} and
1180 execution time model, equation \ref{eq:perf}, to predict the energy consumption and the execution time for each computing node.
1181 Moreover, both algorithms start the search space from the upper bound computed as in equation   \ref{eq:Fint}.
1182 Finally, the resulting EDP algorithm is an exhaustive search algorithm that tests all the possible frequencies, starting from the initial frequencies (upper bound), 
1183 and selects the vector of frequencies that minimize the EDP product.
1184
1185 Both algorithms were applied to the class D of the NAS benchmarks over 16 nodes.
1186 The participating computing nodes are distributed  according to the two scenarios described in  section \ref{sec.res}. 
1187 The experimental results, the energy saving, performance degradation and tradeoff distance percentages, are 
1188 presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively. 
1189 \begin{figure}
1190   \centering
1191   \includegraphics[scale=0.5]{fig/edp_eng}
1192   \caption{Comparing of the energy saving for the proposed method with EDP method}
1193   \label{fig:edp-eng}
1194 \end{figure}
1195 \begin{figure}
1196   \centering
1197   \includegraphics[scale=0.5]{fig/edp_per}
1198   \caption{Comparing of the performance degradation for the proposed method with EDP method}
1199   \label{fig:edp-perf}
1200 \end{figure}
1201 \begin{figure}
1202   \centering
1203   \includegraphics[scale=0.5]{fig/edp_dist}
1204   \caption{Comparing of the tradeoff distance for the proposed method with EDP method}
1205   \label{fig:edp-dist}
1206 \end{figure}
1207 \textcolor{blue}{As shown form these figures, the proposed frequencies selection algorithm, Maxdist, outperform the EDP algorithm in term of energy and performance for all of the benchmarks executed over the two scenarios. 
1208 Generally, the proposed algorithm gives better results for all benchmarks because it is
1209 optimized the distance between the energy saving and the performance degradation in the same time. 
1210 Moreover, the proposed scaling algorithm gives the same weight for these two metrics.
1211 Whereas, the EDP algorithm gives some times negative tradeoff values for some benchmarks in the two sites scenarios.
1212 These negative tradeoff values mean that the performance degradation percentage is higher than energy saving percentage.
1213 The higher positive value of the tradeoff distance percentage mean that the  energy saving percentage is much higher than the performance degradation percentage. 
1214 The time complexity of both Maxdist and EDP algorithms are $O(N \cdot M \cdot F)$ and 
1215 $O(N \cdot M \cdot F^2)$ respectively. Where $N$ is the number of the clusters, $M$ is the number of nodes and $F$ is the 
1216 maximum number of available frequencies. The proposed algorithm, Maxdist, has selected the best frequencies in a small execution time, 
1217 on average is equal to  0.01 $ms$, when it is executed over 32 nodes distributed between Nancy and Lyon sites.
1218 While the EDP algorithm was slower than Maxdist algorithm by ten times over the same number of nodes and same distribution, its execution time on average 
1219 is equal to 0.1 $ms$. 
1220 }
1221
1222
1223 \section{Conclusion}
1224 \label{sec.concl}
1225 \textcolor{blue}{
1226 This paper has been  presented a new online frequencies selection algorithm.
1227 It works based on objective function that maximized the tradeoff distance 
1228 between the predicted energy consumption and the predicted execution time of the distributed 
1229 iterative applications running over heterogeneous grid. The algorithm selects the best vector of the 
1230 frequencies which maximized the objective function has been used. A new energy model 
1231 used by the proposed algorithm for measuring and predicting the energy consumption 
1232 of the distributed iterative message passing application running over grid architecture.
1233 To evaluate the proposed method on a real heterogeneous grid platform, it was applied on the  
1234 NAS parallel benchmarks  class D instance  and executed over grid'5000 testbed platform. 
1235 The experimental results showed that the algorithm saves the energy consumptions on average 
1236 for all NAS benchmarks up to 30\%  while gives only 3\% percentage on average for the performance 
1237 degradation for the same instance. The algorithm also selecting different frequencies according to the 
1238 computations and communication times ratio, and according to the values of the static and measured dynamic power of the CPUs. The computations to communications ratio was varied between different scenarios have been used, concerning to the distribution of the computing nodes between different clusters' sites and using one core or multi-cores per node.
1239 Finally, the proposed algorithm was compared to other algorithm which it
1240 used the will known energy and delay product as an objective function. The comparison results showed 
1241 that the proposed algorithm outperform the other one in term of energy-time tradeoff.
1242 In the near future, we would like to develop a similar method that is adapted to
1243 asynchronous iterative applications where each task does not
1244 wait for other tasks to finish their works. The development of
1245 such a method might require a new energy model because the
1246 number of iterations is not known in advance and depends on
1247 the global convergence of the iterative system.
1248 }
1249
1250
1251 \section*{Acknowledgment}
1252
1253 This work  has been  partially supported by  the Labex ACTION  project (contract
1254 ``ANR-11-LABX-01-01'').  Computations  have been performed  on the supercomputer
1255 facilities  of the  Mésocentre de  calcul de  Franche-Comté. As  a  PhD student,
1256 Mr. Ahmed  Fanfakh, would  like to  thank the University  of Babylon  (Iraq) for
1257 supporting his work.
1258
1259 % trigger a \newpage just before the given reference
1260 % number - used to balance the columns on the last page
1261 % adjust value as needed - may need to be readjusted if
1262 % the document is modified later
1263 %\IEEEtriggeratref{15}
1264
1265 \bibliographystyle{IEEEtran}
1266 \bibliography{IEEEabrv,my_reference}
1267 \end{document}
1268
1269 %%% Local Variables:
1270 %%% mode: latex
1271 %%% TeX-master: t
1272 %%% fill-column: 80
1273 %%% ispell-local-dictionary: "american"
1274 %%% End:
1275
1276 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
1277 % LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
1278 % LocalWords:  de badri muslim MPI SimGrid GFlops Xeon EP BT GPUs CPUs AMD
1279 %  LocalWords:  Spiliopoulos scalability