]> AND Private Git Repository - mpi-energy2.git/blob - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Delete unused EPS files.
[mpi-energy2.git] / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{subfig}
9 \usepackage{amsmath}
10
11 \usepackage{url}
12 \DeclareUrlCommand\email{\urlstyle{same}}
13
14 \usepackage[autolanguage,np]{numprint}
15 \AtBeginDocument{%
16   \renewcommand*\npunitcommand[1]{\text{#1}}
17   \npthousandthpartsep{}}
18
19 \usepackage{xspace}
20 \usepackage[textsize=footnotesize]{todonotes}
21 \newcommand{\AG}[2][inline]{%
22   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
23 \newcommand{\JC}[2][inline]{%
24   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
27
28 \newcommand{\Dist}{\textit{Dist}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Fdiff}{\Xsub{F}{diff}}
34 \newcommand{\Fmax}{\Xsub{F}{max}}
35 \newcommand{\Fnew}{\Xsub{F}{new}}
36 \newcommand{\Ileak}{\Xsub{I}{leak}}
37 \newcommand{\Kdesign}{\Xsub{K}{design}}
38 \newcommand{\MaxDist}{\textit{Max Dist}}
39 \newcommand{\Ntrans}{\Xsub{N}{trans}}
40 \newcommand{\Pdyn}{\Xsub{P}{dyn}}
41 \newcommand{\PnormInv}{\Xsub{P}{NormInv}}
42 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
43 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
44 \newcommand{\Pstates}{\Xsub{P}{states}}
45 \newcommand{\Pstatic}{\Xsub{P}{static}}
46 \newcommand{\Sopt}{\Xsub{S}{opt}}
47 \newcommand{\Tcomp}{\Xsub{T}{comp}}
48 \newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
49 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
50 \newcommand{\Tmax}{\Xsub{T}{max}}
51 \newcommand{\Tnew}{\Xsub{T}{New}}
52 \newcommand{\Told}{\Xsub{T}{Old}}
53
54 \begin{document}
55
56 \title{Energy Consumption Reduction in heterogeneous architecture using DVFS}
57
58 \author{%
59   \IEEEauthorblockN{%
60     Jean-Claude Charr,
61     Raphaël Couturier,
62     Ahmed Fanfakh and
63     Arnaud Giersch
64   }
65   \IEEEauthorblockA{%
66     FEMTO-ST Institute\\
67     University of Franche-Comté\\
68     IUT de Belfort-Montbéliard,
69     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
70     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
71     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
72     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
73    }
74   }
75
76 \maketitle
77
78 \begin{abstract}
79   
80 \end{abstract}
81
82 \section{Introduction}
83 \label{sec.intro}
84
85
86 \section{Related works}
87 \label{sec.relwork}
88
89
90
91
92
93 \section{The performance and energy consumption measurements on heterogeneous architecture}
94 \label{sec.exe}
95
96 % \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
97 %   can be deleted if we need space, we can just say we are interested in this
98 %   paper in homogeneous clusters}
99
100 \subsection{The performance of parallel tasks on heterogeneous cluster}
101
102 The  heterogeneous cluster is a collection of non identical computing nodes. Each node in 
103 a cluster is connected via a high speed network. The communication capabilities between nodes  
104 are  identical or different. In this work we are interested in identical communications. While each 
105 node has different processing capabilities such as CPU speeds and memory. Tasks executed
106 on this model can be either synchronous or asynchronous. In this paper we are consider execution of 
107 the synchronous tasks on distributed heterogeneous platform. These tasks can exchange
108 the data via synchronous message passing. 
109
110 \begin{figure}[t]
111   \centering
112     \includegraphics[scale=0.6]{fig/commtasks}
113   \caption{Parallel tasks on heterogeneous platform}
114   \label{fig:heter}
115 \end{figure}
116
117  Therefore, the  execution time of a task consists of the computation time and
118  the communication time. Due to  heterogeneous computations can lead to slack times while the tasks 
119  wait at the synchronization barrier for other tasks to finish  their jobs (see Figure~(\ref{fig:heter})). 
120  In this case the fastest tasks  have to wait at the synchronization barrier for the slowest ones  to begin
121  the next task. Therefore,  the overall execution time  of the program is the execution time of the slowest
122  task as in  EQ~(\ref{eq:T1}).
123 \begin{equation}
124   \label{eq:T1}
125   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
126 \end{equation}
127  where $T_i$ is the execution time of the task $i$ and all the tasks are executed concurrently on different processors. DVFS is a process that is allowed in modern processors to reduce the dynamic
128 power by scaling down the voltage and frequency. Then any DVFS operation used to reduce energy of the processor has direct affect on the execution time of the MPI program. The reduction process of the frequency can be  expressed by the scaling factor S which is the ratio between  the maximum and the new frequency as in EQ (\ref{eq:s}).
129 \begin{equation}
130   \label{eq:s}
131  S = \frac{F_\textit{max}}{F_\textit{new}}
132 \end{equation}
133  The execution time of a parallel program is linearly proportional to the frequency scaling factor $S$. 
134  However, in most  MPI applications the processes exchange data. During these  communications the
135  processors involved remain idle until the  communications are finished. For that reason, any change in
136  the frequency has no impact on the time of communication~\cite{17}. The communication time for a task is the summation of periods
137  of time that begin with an MPI call for sending or receiving   a message till the message is synchronously sent or received.
138  Each node has different DVFS features such as frequency values and the number of available frequencies 
139  (Pstates) for each node. By contrast there are different frequency scaling factors for each node $S_1, S_2,..., S_N$. To be able to predict the execution time of MPI program, the  communication time and the computation time for the slowest
140  task must be measured before scaling. These times are used to  predict the execution time for any MPI program running on heterogeneous cluster as a function
141  of the new scaling factors as in EQ (\ref{eq:perf}). The model is computes the maximum production of  computation time 
142  with scaling factor from each node  added to the minimum communication time of the slowest node, it means  only the
143  communication time without slack times, because in MPI the slack times is measured with communication times. 
144 \begin{multline}
145   \label{eq:perf}
146  \textit  T_\textit{new} = \\ 
147  {} \max_{i=1,2,\dots,N} (TcpOld_{i} \cdot S_{i}) +  
148  \min_{i=1,2,\dots,N} Tcm Old_{i}
149 \end{multline}
150 This prediction modal is developed from our model for predicting the execution time of parallel task on homogeneous architecture~\cite{45}. The execution time predicting model is useful to used in our method for optimizing both energy and performance of iterative methods as in the coming sections.
151
152
153 \subsection{Energy model for heterogeneous platform}
154
155 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
156 two power metrics: the static and the dynamic power.  While the first one is
157 consumed as long as the computing unit is on, the latter is only consumed during
158 computation times.  The dynamic power $P_{d}$ is related to the switching
159 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
160 operational frequency $F$, as shown in EQ(\ref{eq:pd}).
161 \begin{equation}
162   \label{eq:pd}
163   P_\textit{d} = \alpha \cdot C_L \cdot V^2 \cdot F
164 \end{equation}
165 The static power $P_{s}$ captures the leakage power as follows:
166 \begin{equation}
167   \label{eq:ps}
168    P_\textit{s}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
169 \end{equation}
170 where V is the supply voltage, $N_{trans}$ is the number of transistors,
171 $K_{design}$ is a design dependent parameter and $I_{leak}$ is a
172 technology-dependent parameter.  The energy consumed by an individual processor
173 to execute a given program can be computed as:
174 \begin{equation}
175   \label{eq:eind}
176    E_\textit{ind} =  P_\textit{d} \cdot T_{cp} + P_\textit{s} \cdot T
177 \end{equation}
178 where $T$ is the execution time of the program, $T_{cp}$ is the computation
179 time and $T_{cp} \leq T$.  $T_{cp}$ may be equal to $T$ if there is no
180 communication, no slack time and no synchronization.
181
182 The main objective of DVFS operation is to
183 reduce the overall energy consumption~\cite{37}.  The operational frequency $F$
184 depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
185 constant $\beta$.  This equation is used to study the change of the dynamic
186 voltage with respect to various frequency values in~\cite{3}.  The reduction
187 process of the frequency can be expressed by the scaling factor $S$ which is the
188 ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
189 The value of the scaling factor $S$ is greater than 1 when changing the
190 frequency of the CPU to any new frequency value~(\emph{P-state}) in the
191 governor.  The CPU governor is an interface driver supplied by the operating
192 system's kernel to lower a core's frequency. we can calculate the new frequency 
193 $F_{new}$ from EQ(\ref{eq:s}) as follow:
194 \begin{equation}
195   \label{eq:fnew}
196    F_\textit{new} = S^{-1} .  F_\textit{max}
197 \end{equation}
198 By substituting this equation in EQ(\ref{eq:pd}) results the following equation for dynamic 
199 power consumption:
200 \begin{multline}
201   \label{eq:pdnew}
202    {P}_\textit{d} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
203    = \alpha \cdot C_L \cdot V^2 \cdot F \cdot S^{-3} = P_{d} \cdot S^{-3}
204 \end{multline}
205 According to EQ(\ref{eq:pdnew}) the dynamic power is reduce by a factor of $S^{-3}$ when 
206 reducing the frequency by a factor of $S$~\cite{3}. The dynamic energy is the energy consumed by a CPU when its in the computation mode. 
207 So, the dynamic energy is the  dynamic power multiply by the time of computations. While the time of computation is decreased by a factor of $S$. Therefore the 
208 the dynamic energy  is decreased by a factor of $S^{-2}$ as follow:
209 \begin{equation}
210   \label{eq:Edyn}
211    E_\textit{d} = P_{d} \cdot S^{-3} \cdot (Tcp \cdot S)= S^{-2}\cdot P_{d} \cdot  Tcp 
212 \end{equation}
213 The static power is related to leakage power consumption, its mean the CPU continue consumes energy 
214 whereas in idle state. Therefore, we are make an assumption that the static power is constant as in~\cite{3,46}.
215 The static energy is the static power multiply by the execution time of the program. Moreover, the CPU consumes static
216 energy in all times of the program such as computation, communication and slacks times. According to the execution time model in EQ(\ref{eq:perf}), 
217 the execution time of the program is the summation of the computation and the communication times. The computation time is related  
218 to frequency scaling factor linearly, while this scaling factor not affecting on the time of communication~\cite{17}, then  the static energy 
219 of individual processor is as follow: 
220
221 \begin{equation}
222   \label{eq:Estatic}
223  E_\textit{s} = P_\textit{s} \cdot (Tcp \cdot S  + Tcm)
224 \end{equation}
225 In heterogeneous architecture there is a  number of different processors $P_1, P_2,...,P_N$, where $N$ is the number of nodes . Moreover, each processor perhaps has different frequency  scaling factor, so there are a set of frequency scaling factors for such platform  $S_1,S_2,...,S_N$. According  to these  different 
226 scaling factors producing different computation time, $Tcp_1,Tcp_2,...,Tcp_N$, because these times linearly related to these scaling factors. In MPI program the communication times is measured with slacks times. The slack times also has linear relation with the scaling factors. So, there are different mesured communication times $Tcm_1,Tcm_2,...,Tcm_N$ even if its identical communications, e.g. see figure(\ref{fig:heter}). The energy modal of an  heterogeneous architecture represents the summation of all dynamic and static energies from each  processors, each processor has its dynamic and static powers, for example, in the hole architecture their are: $Pd_1,Pd_2,...,Pd_N$ and $Ps_1,Ps_2,...,Ps_N$.  The dynamic energy is computes as in EQ(\ref{eq:Edyn}) with regarding to the frequency scaling factor and the dynamic power of each node. While the static energy is computes using EQ(\ref{eq:perf}) multiplied  by the static power of each processor. So, the energy modal of an heterogeneous platform has the following form:
227 \begin{multline}
228   \label{eq:energy}
229  E = \sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +\\ 
230  {}\sum_{i=1}^{N} {(Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +} 
231  {}\min_{i=1,2,\dots,N} {Tcm_{i}))} 
232  \end{multline}
233  
234 These set of frequency scaling factors $S_i$ reduce quadratically the dynamic power which may cause degradation in performance and thus, the
235 increase of the static energy because the execution time is increased~\cite{36}.
236
237 \section{Optimization of both energy consumption and performance}
238 \label{sec.compet}
239 Applying DVFS to lower level  not surly reducing the energy consumption to minimum level. Also, a big scaling for the frequency produces high performance degradation percent. Moreover, by considering the  drastically  increase in execution time of parallel program, the static energy is related to this time 
240 and it also increased by the same ratio. Thus, the opportunity for gaining more energy reduction is restricted. For that choosing frequency scaling factors is very important process to taking into account both energy and performance. In our previous work~\cite{45}, we are proposed a method that selects the optimal frequency scaling factor for an homogeneous cluster, depending on the trade-off relation between the energy and performance. In this work we have an  heterogeneous cluster, at each node there is different scaling factors, so our goal is to selects the optimal set of frequency scaling factors, $Sopt_1,Sopt_2,...,Sopt_N$, that gives the best trade-off  between energy consumption and performance. The relation between the energy and the execution time is complex and nonlinear, Thus, unlike the relation between the performance and  the scaling factor,  the relation of the energy with the frequency scaling factors is nonlinear, for more details refer to~\cite{17}.  Moreover, they are not measured using the same metric.  To solve this problem, we normalize the execution time by calculating the ratio between the new execution time (the scaled execution time) and the old one as follow:
241 \begin{multline}
242   \label{eq:pnorm}
243   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
244           = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}} 
245            {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
246 \end{multline}
247
248
249 By the same way, we are normalize the energy by calculating the ratio between the consumed energy with scaled frequency and the consumed energy without scaled frequency:
250 \begin{multline}
251   \label{eq:enorm}
252   E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
253    = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +
254  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
255  \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
256 \end{multline} 
257 Where $T_{New}$ and $T_{Old}$ is computed as in EQ(\ref{eq:pnorm}). The second problem 
258 is that the optimization operation for both energy and performance is not in the same direction.  
259 In other words, the normalized energy and the normalized execution time curves are not at the same direction.  
260 While the main goal is to optimize the energy and execution time in the same time.  According to the 
261 equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the set of frequency scaling factors $S_1,S_2,...,S_N$ reduce both the energy and the
262 execution time simultaneously.  But the main objective is to produce maximum energy
263 reduction with minimum execution time reduction.  Many researchers used different
264 strategies to solve this nonlinear problem for example see~\cite{19,42}, their
265 methods add big overheads to the algorithm to select the suitable frequency.
266 In this paper we are present a method to find the optimal set of frequency scaling factors to optimize both energy and execution time simultaneously
267 without adding a big overhead.  Our solution for this problem is to make the optimization process
268 for energy and execution time follow the same direction.  Therefore, we inverse the equation of the normalized
269 execution time, the normalized performance,  as follows:
270
271 \begin{multline}
272   \label{eq:pnorm_inv}
273   P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
274           = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
275             { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}} 
276 \end{multline}
277
278
279 \begin{figure}
280   \centering
281   \subfloat[Homogeneous platform]{%
282     \includegraphics[width=.22\textwidth]{fig/homo}\label{fig:r1}}%
283   \qquad%
284   \subfloat[Heterogeneous platform]{%
285     \includegraphics[width=.22\textwidth]{fig/heter}\label{fig:r2}}
286   \label{fig:rel}
287   \caption{The energy and performance relation}
288 \end{figure}
289
290 Then, we can model our objective function as finding the maximum distance
291 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
292 curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
293 represents the minimum energy consumption with minimum execution time (better
294 performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}) .  Then our objective
295 function has the following form:
296 \begin{multline}
297   \label{eq:max}
298   Max Dist = 
299   \max_{i=1,\dots F, j=1,\dots,N}
300       (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
301        \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
302 \end{multline}
303 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each nodes. 
304 Then we can select the optimal set of scaling factors that satisfies EQ~(\ref{eq:max}).  Our objective function can
305 work with any energy model or energy values stored in a data file.
306 Moreover, this function works in optimal way when the energy curve has a convex
307 form over the available frequency scaling factors as shown in~\cite{15,3,19}.
308
309 \section{The heterogeneous scaling algorithm }
310 \label{sec.optim}
311 In this section we proposed an heterogeneous scaling algorithm, (figure~\ref{HSA}), that selects the optimal set of scaling factors from each node. 
312 The algorithm is numerates the suitable range of available scaling factors for each node in the heterogeneous cluster, returns a set of optimal frequency scaling factors for each node. Using heterogeneous cluster is produces different workloads for each node. Therefore, the fastest nodes waiting at the barrier for the slowest nodes to finish there work as in figure (\ref{fig:heter}). Our algorithm takes into account these imbalanced workloads when is starts to search for selecting the best scaling factors. So, the algorithm is selecting the initial frequencies values for each node proportional to the times of computations that gathered from the first iteration. As an example in figure (\ref{fig:st_freq}), the algorithm don't test the first frequencies of the fastest nodes until it converge their frequencies to the frequency of the slowest node. If the algorithm is starts test changing the frequency of the slowest nodes from beginning, we are loosing performance and then not selecting the best tradeoff (the distance). This case will be similar to the homogeneous cluster when all nodes scales their frequencies together from the  beginning. In this case there is a small distance between energy and performance curves, for example see the figure(\ref{fig:r1}).  Then the algorithm searching for optimal frequency  scaling factor from the selected frequencies until the last available ones. 
313 \begin{figure}[t]
314   \centering
315     \includegraphics[scale=0.5]{fig/start_freq}
316   \caption{Selecting the initial frequencies}
317   \label{fig:st_freq}
318 \end{figure}
319
320
321 To compute the initial frequencies, the algorithm firstly needs to compute the computation scaling factors $Scp_i$ for each node. Each one of these factors represent a ratio between the computation time of the slowest node and the computation time of the node $i$ as follow:
322 \begin{equation}
323   \label{eq:Scp}
324  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
325 \end{equation}
326 Depending on the initial computation scaling factors EQ(\ref{eq:Scp}), the algorithm computes the initial frequencies for all nodes as a ratio between the 
327 maximum frequency of node $i$  and the computation scaling factor $Scp_i$ as follow:
328 \begin{equation}
329   \label{eq:Fint}
330  F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
331 \end{equation}
332 \begin{figure}[tp]
333   \begin{algorithmic}[1]
334     % \footnotesize
335     \Require ~
336     \begin{description}
337     \item[$Tcp_i$] array of all computation times for all nodes during one iteration and with highest frequency.
338     \item[$Tcm_i$] array of all communication times for all nodes during one iteration and with highest frequency.
339     \item[$Fmax_i$] array of the maximum frequencies for all nodes.
340     \item[$Pd_i$] array of the dynamic powers for all nodes.
341     \item[$Ps_i$] array of the static powers for all nodes.
342     \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
343     \end{description}
344     \Ensure $Sopt_1, \dots ,Sopt_N$ is a set of optimal scaling factors 
345
346     \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
347     \State $F_{i} \gets  \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
348     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
349     \If{(not the first frequency)}
350           \State $F_i \gets F_i+Fdiff_i,~i=1,...,N.$
351     \EndIf 
352     \State $T_\textit{Old} \gets max_{~i=1,...,N } (Tcp_i+Tcm_i)$
353     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
354     \State $Dist \gets 0$
355     \State  $Sopt_{i} \gets 1,~i=1,...,N. $
356     \While {(all nodes not reach their  minimum  frequency)}
357         \If{(not the last freq. \textbf{and} not the slowest node)}
358         \State $F_i \gets F_i - Fdiff_i,~i=1,...,N.$ 
359         \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,...,N.$ 
360         \EndIf
361        \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + min_\textit{~i=1,\dots,N}(Tcm_i) $
362        \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} + $  \hspace*{43 mm} 
363                $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
364        \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
365        \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
366       \If{$(\Pnorm - \Enorm > \Dist)$}
367         \State $Sopt_{i} \gets S_{i},~i=1,...,N. $
368         \State $\Dist \gets \Pnorm - \Enorm$
369       \EndIf
370     \EndWhile
371     \State  Return $Sopt_1,Sopt_2, \dots ,Sopt_N$
372   \end{algorithmic}
373   \caption{Heterogeneous scaling algorithm}
374   \label{HSA}
375 \end{figure}
376 When the initial frequencies are computed the algorithm numerates all available scaling factors starting from these frequencies  until all nodes reach their 
377 minimum frequencies. At each iteration the algorithm remains the frequency of the slowest node without change and scaling the frequency of the other nodes. This is gives better performance and energy tradeoff. 
378 The proposed algorithm works online during the execution time of the MPI
379 program.  Its returns a set of optimal frequency scaling factors $Sopt_i$ depending on the objective function EQ(\ref{eq:max}). The program changes the new frequencies of the CPUs according to the computed scaling factors.  This algorithm has a small execution time: 
380 for an heterogeneous  cluster composed of four different types of nodes having the characteristics presented in
381 table~(\ref{table:platform}), it takes \np[ms]{0.04} on average for 4 nodes and
382 \np[ms]{0.1} on average for 128 nodes.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, 
383 where $F$ is the number of iterations and $N$ is the number of
384 computing nodes. The algorithm needs on average from 12 to 20 iterations for all the NAS benchmark on class C to selects the best set of frequency scaling factors. Its called just once during the execution of the program.  The DVFS figure~(\ref{dvfs}) shows where and when the algorithm is
385 called in the MPI program.
386 \begin{figure}[tp]
387   \begin{algorithmic}[1]
388     % \footnotesize
389     \For {$k=1$ to \textit{some iterations}}
390       \State Computations section.
391       \State Communications section.
392       \If {$(k=1)$}
393         \State Gather all times of computation and\newline\hspace*{3em}%
394                communication from each node.
395         \State Call algorithm from Figure~\ref{HSA} with these times.
396         \State Compute the new frequencies from the\newline\hspace*{3em}%
397                returned optimal scaling factors.
398         \State Set the new frequencies to nodes.
399       \EndIf
400     \EndFor
401   \end{algorithmic}
402   \caption{DVFS algorithm}
403   \label{dvfs}
404 \end{figure}
405
406 \section{Experimental results}
407 \label{sec.expe}
408 The experiments  of this work are executed on the simulator Simgrid/SMPI v3.10. We configure the simulator to use a heterogeneous cluster 
409 with one core per node. The proposed heterogeneous cluster has four different types of nodes. Each node in cluster has different characteristics 
410 such as the maximum frequency speed, the number of available frequencies and dynamic and static powers values, see table (\ref{table:platform}). These different types of processing nodes simulate some real Intel processors. The maximum number of nodes that supported by the cluster is 144 nodes according to  characteristics of some MPI programs of the NAS benchmarks that used. We are use the same number from each type of nodes when running the MPI programs, for example if we execute the program on 8 node, there are 2 nodes from each type participating in the computing. The dynamic and static power values is different from one type to other. Each node has a dynamic and static power values proportional to their performance/GFlops, for more details see the Intel data sheets in \cite{47}.  Each node has a percentage of  80\% for dynamic power and 20\% for static power from the hole power consumption, the same assumption is made in \cite{45,3}. These nodes are connected via an ethernet network with 1 Gbit/s bandwidth.
411 \begin{table}[htb]
412   \caption{Heterogeneous nodes characteristics}
413   % title of Table
414   \centering
415   \begin{tabular}{|*{7}{l|}}
416     \hline
417     Node     & Similar     & Max        & Min          & Diff.          & Dynamic      & Static \\
418     type     & to          & Freq. GHz  & Freq. GHz    & Freq GHz       & power        & power \\
419     \hline
420     1       & core-i3       & 2.5         & 1.2          & 0.1           & 20~w         &4~w    \\
421             &  2100T        &             &              &               &              &  \\
422     \hline
423     2       & Xeon          & 2.66        & 1.6          & 0.133         & 25~w         &5~w    \\
424             & 7542          &             &              &               &              &  \\
425     \hline
426     3       & core-i5       & 2.9         & 1.2          & 0.1           & 30~w         &6~w    \\
427             & 3470s         &             &              &               &              &  \\
428     \hline
429     4       & core-i7       & 3.4         & 1.6          & 0.133         & 35~w         &7~w    \\
430             & 2600s         &             &              &               &              &  \\
431     \hline
432   \end{tabular}
433   \label{table:platform}
434 \end{table}
435
436  
437 %\subsection{Performance prediction verification}
438
439
440 \subsection{The experimental results of the scaling algorithm}
441 \label{sec.res}
442
443 The proposed algorithm was applied to seven MPI programs of the NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) NPB v3.
444 \cite{44},  which were run with three classes (A, B and C).
445 In this experiments we are focus on running of the class C, the biggest class compared to A and B, on different number of 
446 nodes, from 4 to 128 or 144 nodes according to the type of the MPI program.  Depending on the proposed energy consumption model EQ(\ref{eq:energy}),
447  we are measure the energy consumption for all NAS MPI programs. The dynamic and static power values used under the same assumption used by \cite{45,3}. We used a percentage of 80\% for dynamic power from all power consumption of the CPU and 20\% for static power. The heterogeneous nodes in table (\ref{table:platform}) have different  simulated performance, ranked from the node of type 1 with smaller performance/GFlops to the highest performance/GFlops for node 4. Therefore, the power values used proportionally increased from node 1 to node 4 that with highest performance. Then we used an assumption that the power consumption increases linearly with the performance/GFlops of the processor see \cite{48}.   
448  
449 \begin{table}[htb]
450   \caption{Running NAS benchmarks on 4 nodes }
451   % title of Table
452   \centering
453   \begin{tabular}{|*{7}{l|}}
454     \hline
455     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
456     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
457     \hline
458     CG         &  64.64        & 3560.39        &34.16        &6.72               &27.44       \\
459     \hline 
460     MG         & 18.89         & 1074.87            &35.37            &4.34                   &31.03       \\
461    \hline
462     EP         &79.73          &5521.04         &26.83            &3.04               &23.79      \\
463    \hline
464     LU         &308.65         &21126.00           &34.00             &6.16                   &27.84      \\
465     \hline
466     BT         &360.12         &21505.55           &35.36         &8.49               &26.87     \\
467    \hline
468     SP         &234.24         &13572.16           &35.22         &5.70               &29.52    \\
469    \hline
470     FT         &81.58          &4151.48        &35.58         &0.99                   &34.59    \\
471 \hline 
472   \end{tabular}
473   \label{table:res_4n}
474 \end{table}
475
476 \begin{table}[htb]
477   \caption{Running NAS benchmarks on 8 and 9 nodes }
478   % title of Table
479   \centering
480   \begin{tabular}{|*{7}{l|}}
481     \hline
482     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
483     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
484     \hline
485     CG         &36.11              &3263.49             &31.25        &7.12                    &24.13     \\
486     \hline 
487     MG         &8.99           &953.39          &33.78        &6.41                    &27.37     \\
488    \hline
489     EP         &40.39          &5652.81         &27.04        &0.49                    &26.55     \\
490    \hline
491     LU         &218.79             &36149.77        &28.23        &0.01                    &28.22      \\
492     \hline
493     BT         &166.89         &23207.42            &32.32            &7.89                    &24.43      \\
494    \hline
495     SP         &104.73         &18414.62            &24.73            &2.78                    &21.95      \\
496    \hline
497     FT         &51.10          &4913.26         &31.02        &2.54                    &28.48      \\
498 \hline 
499   \end{tabular}
500   \label{table:res_8n}
501 \end{table}
502
503 \begin{table}[htb]
504   \caption{Running NAS benchmarks on 16 nodes }
505   % title of Table
506   \centering
507   \begin{tabular}{|*{7}{l|}}
508     \hline
509     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
510     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
511     \hline
512     CG         &31.74          &4373.90         &26.29        &9.57                    &16.72          \\
513     \hline 
514     MG         &5.71           &1076.19         &32.49        &6.05                    &26.44         \\
515    \hline
516     EP         &20.11          &5638.49         &26.85        &0.56                    &26.29         \\
517    \hline
518     LU         &144.13         &42529.06            &28.80            &6.56                    &22.24         \\
519     \hline
520     BT         &97.29          &22813.86            &34.95        &5.80                &29.15         \\
521    \hline
522     SP         &66.49          &20821.67            &22.49            &3.82                    &18.67         \\
523    \hline
524     FT             &37.01          &5505.60             &31.59        &6.48                    &25.11         \\
525 \hline 
526   \end{tabular}
527   \label{table:res_16n}
528 \end{table}
529
530 \begin{table}[htb]
531   \caption{Running NAS benchmarks on 32 and 36 nodes }
532   % title of Table
533   \centering
534   \begin{tabular}{|*{7}{l|}}
535     \hline
536     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
537     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
538     \hline
539     CG         &32.35          &6704.21         &16.15        &5.30                    &10.85           \\
540     \hline 
541     MG         &4.30           &1355.58         &28.93        &8.85                    &20.08          \\
542    \hline
543     EP         &9.96           &5519.68         &26.98        &0.02                    &26.96          \\
544    \hline
545     LU         &99.93          &67463.43            &23.60            &2.45                    &21.15          \\
546     \hline
547     BT         &48.61          &23796.97            &34.62            &5.83                    &28.79          \\
548    \hline
549     SP         &46.01          &27007.43            &22.72            &3.45                    &19.27           \\
550    \hline
551     FT             &28.06          &7142.69             &23.09        &2.90                    &20.19           \\
552 \hline 
553   \end{tabular}
554   \label{table:res_32n}
555 \end{table}
556
557 \begin{table}[htb]
558   \caption{Running NAS benchmarks on 64 nodes }
559   % title of Table
560   \centering
561   \begin{tabular}{|*{7}{l|}}
562     \hline
563     Method     & Execution     & Energy         & Energy      & Performance        & Distance      \\
564     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
565     \hline
566     CG         &46.65          &17521.83            &8.13             &1.68                    &6.45           \\
567     \hline 
568     MG         &3.27           &1534.70         &29.27        &14.35               &14.92          \\
569    \hline
570     EP         &5.05           &5471.1084           &27.12            &3.11                &24.01         \\
571    \hline
572     LU         &73.92          &101339.16           &21.96            &3.67                    &18.29         \\
573     \hline
574     BT         &39.99          &27166.71            &32.02            &12.28               &19.74         \\
575    \hline
576     SP         &52.00          &49099.28            &24.84            &0.03                    &24.81         \\
577    \hline
578     FT         &25.97          &10416.82        &20.15        &4.87                    &15.28         \\
579 \hline 
580   \end{tabular}
581   \label{table:res_64n}
582 \end{table}
583
584
585 \begin{table}[htb]
586   \caption{Running NAS benchmarks on 128 and 144 nodes }
587   % title of Table
588   \centering
589   \begin{tabular}{|*{7}{l|}}
590     \hline
591     Method     & Execution     & Energy         & Energy      & Performance        & Distance     \\
592     name       & time/s        & consumption/J  & saving\%    & degradation\%      &              \\
593     \hline
594     CG         &56.92          &41163.36        &4.00         &1.10                    &2.90          \\
595     \hline 
596     MG         &3.55           &2843.33         &18.77        &10.38               &8.39          \\
597    \hline
598     EP         &2.67           &5669.66         &27.09        &0.03                    &27.06         \\
599    \hline
600     LU         &51.23          &144471.90       &16.67        &2.36                    &14.31         \\
601     \hline
602     BT         &37.96          &44243.82            &23.18            &1.28                    &21.90         \\
603    \hline
604     SP         &64.53          &115409.71           &26.72            &0.05                    &26.67         \\
605    \hline
606     FT         &25.51          &18808.72            &12.85            &2.84                    &10.01         \\
607 \hline 
608   \end{tabular}
609   \label{table:res_128n}
610 \end{table}
611
612 The results of applying the proposed scaling algorithm to NAS benchmarks is demonstrated in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, 
613 \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). These tables show the results for running the NAS benchmarks on different number of nodes. In general the energy saving percent is decreased  when the number of the computing nodes is increased. While the distance is decreased by the same direction. This because when we are run the MPI programs on a big number of nodes the communications is biggest than the computations, so the static energy is increased linearly to these times. The tables also show that performance degradation percent still approximately the same or decreased a little when the number of computing nodes is increased. This  gives good a prove that the proposed algorithm keeping as mush as possible the performance degradation. 
614
615 \begin{figure}
616   \centering
617   \subfloat[Balanced nodes type scenario]{%
618     \includegraphics[width=.23185\textwidth]{fig/avg_eq}\label{fig:avg_eq}}%
619   \quad%
620   \subfloat[Imbalanced nodes type scenario]{%
621     \includegraphics[width=.23185\textwidth]{fig/avg_neq}\label{fig:avg_neq}}
622   \label{fig:avg}
623   \caption{The average of energy and performance for all Nas benchmarks running with difference number of nodes}
624 \end{figure}
625
626 In the NAS benchmarks there are some programs executed on different number of nodes. The benchmarks CG, MG, LU and FT executed on 2 to a power of (1, 2, 4, 8, ...) of nodes. The other benchmarks such as BT and SP executed on 2 to a power of (1, 2, 4, 9, ...) of nodes. We are take the average of energy saving, performance degradation and distances for all results of NAS benchmarks. The average of these three objectives are plotted to the number of nodes as in plots (\ref{fig:avg_eq} and \ref{fig:avg_neq}).  In CG, MG, LU, and FT benchmarks the average of energy saving is decreased when the number of nodes is increased due to the increasing in the communication times as mentioned before. Thus, the average of distances (our objective function) is decreased linearly with energy saving while keeping the average of performance degradation the same. In BT and SP benchmarks, the average of energy saving is not decreased significantly compare to other benchmarks when the number of nodes is increased. Nevertheless, the average of performance  degradation approximately still the same ratio. This difference is depends on the characteristics of the benchmarks such as the computation to communication ratio that has. 
627
628 \subsection{The results for different powers scenarios}
629 The results of the previous section are obtained using a percentage of 80\% for dynamic power and 20\% for static power of total power consumption. In this section we are change these ratio by using two others scenarios. Because is  interested to measure the ability  of the proposed algorithm to changes it   behaviour when these power ratios are changed. In fact, we are use two different scenarios for dynamic and static power ratios in addition to the previous scenario in section (\ref{sec.res}). Therefore, we have three different scenarios for three different dynamic and static power ratios refer to as: 70\%-20\%, 80\%-20\% and 90\%-10\% scenario. The results of these scenarios running NAS benchmarks class C on 8 or 9 nodes are place in the tables (\ref{table:res_s1} and \ref{table:res_s2}).
630
631  \begin{table}[htb]
632   \caption{The results of 70\%-30\% powers scenario}
633   % title of Table
634   \centering
635   \begin{tabular}{|*{6}{l|}}
636     \hline
637     Method     & Energy          & Energy      & Performance        & Distance     \\
638     name       & consumption/J   & saving\%    & degradation\%      &              \\
639     \hline
640     CG         &4144.21          &22.42        &7.72                &14.70         \\
641     \hline 
642     MG         &1133.23          &24.50        &5.34                &19.16          \\
643    \hline
644     EP         &6170.30         &16.19         &0.02                &16.17          \\
645    \hline
646     LU         &39477.28        &20.43         &0.07                &20.36          \\
647     \hline
648     BT         &26169.55            &25.34             &6.62                &18.71          \\
649    \hline
650     SP         &19620.09            &19.32             &3.66                &15.66          \\
651    \hline
652     FT         &6094.07         &23.17         &0.36                &22.81          \\
653 \hline 
654   \end{tabular}
655   \label{table:res_s1}
656 \end{table}
657
658
659
660 \begin{table}[htb]
661   \caption{The results of 90\%-10\% powers scenario}
662   % title of Table
663   \centering
664   \begin{tabular}{|*{6}{l|}}
665     \hline
666     Method     & Energy          & Energy      & Performance        & Distance     \\
667     name       & consumption/J   & saving\%    & degradation\%      &              \\
668     \hline
669     CG         &2812.38          &36.36        &6.80                &29.56         \\
670     \hline 
671     MG         &825.427          &38.35        &6.41                &31.94         \\
672    \hline
673     EP         &5281.62          &35.02        &2.68                &32.34         \\
674    \hline
675     LU         &31611.28             &39.15        &3.51                    &35.64        \\
676     \hline
677     BT         &21296.46             &36.70            &6.60                &30.10       \\
678    \hline
679     SP         &15183.42             &35.19            &11.76               &23.43        \\
680    \hline
681     FT         &3856.54          &40.80        &5.67                &35.13        \\
682 \hline 
683   \end{tabular}
684   \label{table:res_s2}
685 \end{table}
686
687
688 \begin{figure}
689   \centering
690   \subfloat[Comparison the average of the results on 8 nodes]{%
691     \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
692   \quad%
693   \subfloat[Comparison the selected frequency scaling factors for 8 nodes]{%
694     \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
695   \label{fig:avg}
696   \caption{The comparison of the three power scenarios}
697 \end{figure}
698
699 To compare the results of these three powers scenarios, we are take the average of the performance degradation, the energy saving and the distances for all NAS benchmarks running on 8 or 9 nodes of class C, as in figure (\ref{fig:sen_comp}). Thus, according to the average of the results, the energy saving ratio is increased when using the a higher percentage for dynamic power (e.g. 90\%-10\% scenario). While the average of energy saving is decreased in 70\%-30\% scenario. 
700 Because the static energy consumption is increase. Moreover, the average of distances is more related to energy saving changes. The average of the performance degradation is decreased when using a higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\% scenario). The raison behind these relations, that the proposed algorithm optimize both energy consumption and performance in the same time. Therefore, when using a higher ratio for dynamic power the algorithm selecting bigger frequency scaling factors values, more energy saving versus more performance degradation, for example see the figure (\ref{fig:scales_comp}). The inverse happen when using a higher ratio for  static  power, the algorithm proportionally  selects a smaller scaling values, less energy saving versus less performance degradation. This is because the  
701 algorithm also keeps as much as possible the static energy consumption that is always related to execution time. 
702
703 \subsection{The verifications of the proposed method}
704 \label{sec.verif}
705 The precision of the proposed algorithm mainly depends on the execution time prediction model and the energy model. The energy model is significantly depends on the execution time model EQ(\ref{eq:perf}), that the energy static related linearly. So, we are compare the predicted execution time with the real execution time (Simgrid time)  values that gathered  offline for the NAS benchmarks class B executed on 8 or 9 nodes. The execution time model can predicts 
706 the real execution time by maximum normalized error 0.03 of all NAS benchmarks. The second verification that we are make is for the scaling algorithm to prove its ability to selects the best set of frequency scaling factors. Therefore, we are expand the algorithm to test at each iteration the frequency scaling factor of the slowest node with the all scaling factors available of the other nodes. This version of the algorithm is applied to different NAS benchmarks classes with different number of nodes. The results from the two algorithms is identical. While the proposed algorithm is runs faster, 10 times faster on average than the expanded algorithm.
707
708 \section{Conclusion}
709 \label{sec.concl}
710
711
712 \section*{Acknowledgment}
713
714
715 % trigger a \newpage just before the given reference
716 % number - used to balance the columns on the last page
717 % adjust value as needed - may need to be readjusted if
718 % the document is modified later
719 %\IEEEtriggeratref{15}
720
721 \bibliographystyle{IEEEtran}
722 \bibliography{IEEEabrv,my_reference}
723 \end{document}
724
725 %%% Local Variables:
726 %%% mode: latex
727 %%% TeX-master: t
728 %%% fill-column: 80
729 %%% ispell-local-dictionary: "american"
730 %%% End:
731
732 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
733 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex