]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some corrections
authorafanfakh <afanfakh@fanfakh.afanfakh>
Mon, 24 Nov 2014 09:40:31 +0000 (10:40 +0100)
committerafanfakh <afanfakh@fanfakh.afanfakh>
Mon, 24 Nov 2014 09:40:31 +0000 (10:40 +0100)
Heter_paper.tex
my_reference.bib

index 260408c7c7393d4451ead29ccfabdecefa3fc081..babdfc2373f30e70758c5d0a7a777cbcd4283a7d 100644 (file)
 \maketitle
 
 \begin{abstract}
-Computing platforms are consuming more and more energy due to the increase of the number of nodes composing them. To minimize the operating costs of these platforms many techniques have been used. Dynamic voltage and frequency scaling (DVFS) is one of them, it reduces the frequency of a CPU to lower its energy consumption. However, lowering the frequency of a CPU might increase the execution time of an application running on that processor. Therefore, the frequency that gives the best  tradeoff between the energy consumption and the performance of an application must be selected. 
-
-In this paper, a new online frequencies selecting algorithm for heterogeneous platforms is presented. It selects the frequency that gives  the best tradeoff between energy saving and
-performance degradation, for each node computing the message passing iterative application. The algorithm has a small overhead and works without training or profiling.
-It uses a new energy model for message passing iterative applications running on a heterogeneous platform. 
-The proposed algorithm was evaluated  on the Simgrid simulator while running the NAS parallel benchmarks.
-The experiments demonstrated that it reduces the energy consumption up to 35\% while limiting the performance degradation as much as possible.
+Computing platforms are consuming more and more energy due to the increase of the number of nodes composing them. 
+To minimize the operating costs of these platforms many techniques have been used. Dynamic voltage and frequency 
+scaling (DVFS) is one of them, it reduces the frequency of a CPU to lower its energy consumption. However, 
+lowering the frequency of a CPU might increase the execution time of an application running on that processor. 
+Therefore, the frequency that gives the best  tradeoff between the energy consumption and the performance of an 
+application must be selected. 
+
+In this paper, a new online frequencies selecting algorithm for heterogeneous platforms is presented. 
+It selects the frequency that gives  the best tradeoff between energy saving and performance degradation, 
+for each node computing the message passing iterative application. The algorithm has a small overhead and 
+works without training or profiling. It uses a new energy model for message passing iterative applications 
+running on a heterogeneous platform. The proposed algorithm was evaluated  on the Simgrid simulator while 
+running the NAS parallel benchmarks. The experiments demonstrated that it reduces the energy consumption 
+up to 35\% while limiting the performance degradation as much as possible.
 \end{abstract}
 
 \section{Introduction}
 \label{sec.intro}
-The need for more computing power is continually increasing. To partially satisfy this need, most supercomputers constructors just put more computing nodes in their platform. The resulting platform might achieve higher floating point operations per second (FLOPS), but the energy consumption and the heat dissipation are also increased. As an example, the chinese supercomputer Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 list \cite{TOP500_Supercomputers_Sites}.  However, it was also the  most power hungry platform with its over 3 millions cores consuming around 17.8 megawatts.
-Moreover, according to the U.S. annual energy outlook 2014 
+The need for more computing power is continually increasing. To partially satisfy this need, most supercomputers 
+constructors just put more computing nodes in their platform. The resulting platform might achieve higher floating 
+point operations per second (FLOPS), but the energy consumption and the heat dissipation are also increased. 
+As an example, the chinese supercomputer Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 
+list \cite{TOP500_Supercomputers_Sites}.  However, it was also the  most power hungry platform with its over 3 millions 
+cores consuming around 17.8 megawatts. Moreover, according to the U.S. annual energy outlook 2014 
 \cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour 
 was approximately equal to \$70. 
 Therefore, the price of the energy consumed by the 
 Tianhe-2 platform is approximately more than \$10 millions each year. 
-The computing platforms must be more energy efficient and offer the highest number of FLOPS per watt possible, such as the TSUBAME-KFC at the GSIC center of Tokyo which  
+The computing platforms must be more energy efficient and offer the highest number of FLOPS per watt possible, 
+such as the TSUBAME-KFC at the GSIC center of Tokyo which  
 became the top of the Green500 list in June 2014 \cite{Green500_List}. 
 This heterogeneous platform executes more than four  GFLOPS per watt.
 
- Besides hardware improvements, there are many software techniques to lower the energy consumption of these platforms, such as scheduling, DVFS, ... DVFS is a widely  used process to reduce the energy 
-consumption of a processor by lowering its frequency. \textbf{put a reference to DVFS} However, it also the reduces the number of FLOPS executed by the processor which might increase the execution time of the application running over that processor.
-Therefore,  researchers used different optimization strategies to select the frequency that gives the best tradeoff   between the energy reduction and 
-performance degradation ratio.
-\textbf{you should talk about the first paper here and say that the algorithm was applied to a homogeneous platform then define what is a heterogeneous platform, you can take it from the firdt paragraph in section 3 }
+Besides hardware improvements, there are many software techniques to lower the energy consumption of these platforms, 
+such as scheduling, DVFS, ... DVFS is a widely  used process to reduce the energy consumption of a processor by lowering 
+its frequency \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also the reduces the number of FLOPS 
+executed by the processor which might increase  the execution time of the application running over that processor.
+Therefore, researchers used different optimization strategies to select the frequency that gives the best tradeoff  
+between the energy reduction and 
+performance degradation ratio. \textbf{In our previous paper \cite{Our_first_paper},  a frequency selecting algorithm 
+was proposed for distributed iterative application running over homogeneous platform. While in this paper the algorithm is  significantly adapted to run over a heterogeneous platform. This platform is a collection of heterogeneous computing nodes interconnected via a high speed homogeneous network.}
 
-In this paper, a frequency selecting algorithm is proposed. It  selects the vector of frequencies for a heterogeneous platform that runs a message passing iterative application,  that gives the maximum energy reduction and minimum 
+The proposed frequency selecting algorithm selects the vector of frequencies for a heterogeneous platform that runs a message passing iterative application,  that gives the maximum energy reduction and minimum 
 performance degradation ratio simultaneously. The algorithm has a very small 
 overhead, works online and does not need any training or profiling.  
 
@@ -113,13 +128,12 @@ execution time of message passing programs can be predicted.  It also presents a
 model that predicts the energy consumption of an application running over a heterogeneous platform. Section~\ref{sec.compet} presents
 the energy-performance objective function that maximizes the reduction of energy
 consumption while minimizing the degradation of the program's performance.
-Section~\ref{sec.optim} details the proposed frequency selecting algorithm then the precision of the proposed algorithm is verified.\textbf{the verification should be put here}  
+Section~\ref{sec.optim} details the proposed frequency selecting algorithm then the precision of the proposed algorithm is verified. 
 Section~\ref{sec.expe} presents the results of applying the algorithm on  the NAS parallel benchmarks and executing them 
 on a heterogeneous platform. It also shows the results of running three 
 different power scenarios and comparing them. 
 Finally, we conclude in Section~\ref{sec.concl} with a summary and some future works.
 
-\textbf{never use we in an article and the algorithm is not heterogeneous! you cannot use scaling factors before defining what they are.}
 \section{Related works}
 \label{sec.relwork}
 Energy reduction process for high performance clusters recently performed using 
@@ -133,15 +147,15 @@ parallel applications.  Many researchers used different strategies to solve this
 nonlinear problem for example in
 ~\cite{Hao_Learning.based.DVFS,Dhiman_Online.Learning.Power.Management}, their methods 
 add big overheads to the algorithm to select the suitable frequency.  
-In this paper we  present a method 
-to find the optimal set of frequency scaling factors for heterogeneous cluster to 
+This paper presents a method 
+to find the optimal set of frequencies for heterogeneous cluster to 
 simultaneously optimize both the energy and the execution time  without adding big 
 overhead. This work is developed from our previous work of homogeneous cluster~\cite{Our_first_paper}. 
 Therefore we are interested to present some works that concerned the heterogeneous clusters 
 enabled DVFS. In general, the heterogeneous cluster works fall into two categorizes: 
 GPUs-CPUs heterogeneous clusters and CPUs-CPUs heterogeneous clusters. In GPUs-CPUs 
 heterogeneous clusters some parallel tasks executed on  GPUs and the others executed 
-on  CPUs. As an example of this works, Luley et al.
+on  CPUs. As an example of these works, Luley et al.
 ~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed  a heterogeneous 
 cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal is to determined the 
 energy efficiency as a function of performance per watt, the best tradeoff is done when the 
@@ -176,16 +190,16 @@ they are selected the best frequencies for a specified heterogeneous clusters of
 heuristic methods. While our proposed algorithm works online during the execution time of 
 iterative application. Greedy dynamic approach used by Chen et al.~\cite{Chen_DVFS.under.quality.of.service.requirements},  
 minimized the power consumption of a heterogeneous severs  with time/space complexity, this approach 
-had considerable overhead. In our proposed scaling algorithm has very small overhead and 
+had considerable overhead. In our proposed frequency selecting algorithm has very small overhead and 
 it is works without any previous analysis for the application time complexity. The primary 
 contributions of our paper are :
 \begin{enumerate}
-\item It is presents  a new online heterogeneous scaling algorithm which has very small 
+\item It is presents  a new online frequency selecting algorithm which has very small 
       overhead and not need for any training and profiling.
 \item It is develops a new energy model for iterative distributed applications running over 
        a heterogeneous clusters, taking into account the communication and slack times.
-\item The proposed scaling algorithm predicts both the energy and the execution time 
-      of the iterative application.
+\item The proposed frequency selecting algorithm predicts both the energy and the execution time 
+      of the iterative application running over heterogeneous platform.
 \item It demonstrates a new optimization function which maximize the performance and 
       minimize the energy consumption simultaneously.
       
@@ -194,9 +208,7 @@ contributions of our paper are :
 \section{The performance and energy consumption measurements on heterogeneous architecture}
 \label{sec.exe}
 
-% \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
-%   can be deleted if we need space, we can just say we are interested in this
-%   paper in homogeneous clusters}
+
 
 \subsection{The execution time of message passing distributed 
                 iterative applications on a heterogeneous platform}
@@ -266,7 +278,28 @@ vector of scaling factors can be predicted using EQ (\ref{eq:perf}).
 where $TcpOld_i$ is the computation time  of processor $i$ during the first 
 iteration and $MinTcm$ is the communication time of the slowest processor from 
 the first iteration.  The model computes the maximum computation time 
-with scaling factor from each node  added to the communication time of the 
+with scaling factor from each node  added to the communication time of the \subsection{The verifications of the proposed method}
+\label{sec.verif}
+The precision of the proposed algorithm mainly depends on the execution time prediction model defined in 
+EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). 
+The energy model is also significantly dependent  on the execution time model because the static energy is 
+linearly related the execution time and the dynamic energy is related to the computation time. So, all of 
+the work presented in this paper is based on the execution time model. To verify this model, the predicted 
+execution time was compared to  the real execution time over Simgrid for all  the NAS parallel benchmarks 
+running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, 
+the maximum normalized difference between the predicted execution time  and the real execution time is equal 
+to 0.03 for all the NAS benchmarks.
+
+Since  the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) 
+in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm 
+that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
+different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
+and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
+for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in 
+table~(\ref{table:platform}), it takes on average \np[ms]{0.04}  for 4 nodes and \np[ms]{0.15} on average for 144 nodes 
+to compute the best scaling factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number 
+of iterations and $N$ is the number of computing nodes. The algorithm needs  from 12 to 20 iterations to select the best 
+vector of frequency scaling factors that gives the results of the sections (\ref{sec.res}) and (\ref{sec.compare}).
 slowest node, it means  only the  communication time without any slack time. 
 Therefore, we can consider the execution time of the iterative application is 
 equal to the execution time of one iteration as in EQ(\ref{eq:perf}) multiplied 
@@ -485,6 +518,7 @@ the energy curve has a convex form as shown in~\cite{Zhuo_Energy.efficient.Dynam
 \section{The scaling factors selection algorithm for heterogeneous platforms }
 \label{sec.optim}
 
+\subsection{The algorithm details}
 In this section we  propose algorithm~(\ref{HSA}) which selects the frequency scaling factors 
 vector that gives the best trade-off between minimizing the energy consumption  and maximizing 
 the performance of a message passing synchronous iterative application executed on a heterogeneous 
@@ -622,10 +656,33 @@ which results in bigger energy savings.
   \label{dvfs}
 \end{algorithm}
 
+\subsection{The verifications of the proposed algorithm}
+\label{sec.verif}
+The precision of the proposed algorithm mainly depends on the execution time prediction model defined in 
+EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). 
+The energy model is also significantly dependent  on the execution time model because the static energy is 
+linearly related the execution time and the dynamic energy is related to the computation time. So, all of 
+the work presented in this paper is based on the execution time model. To verify this model, the predicted 
+execution time was compared to  the real execution time over Simgrid for all  the NAS parallel benchmarks 
+\cite{NAS.Parallel.Benchmarks}, running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, 
+the maximum normalized difference between the predicted execution time  and the real execution time is equal 
+to 0.03 for all the NAS benchmarks.
+
+Since  the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) 
+in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm 
+that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
+different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
+and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
+for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in 
+table~(\ref{table:platform}), it takes on average \np[ms]{0.04}  for 4 nodes and \np[ms]{0.15} on average for 144 nodes 
+to compute the best scaling factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number 
+of iterations and $N$ is the number of computing nodes. The algorithm needs  from 12 to 20 iterations to select the best 
+vector of frequency scaling factors that gives the results of the next sections.
+
 \section{Experimental results}
 \label{sec.expe}
 To evaluate the efficiency and the overall energy consumption reduction of algorithm~(\ref{HSA}), 
-it was applied to the NAS parallel benchmarks NPB v3.3  \cite{NAS.Parallel.Benchmarks}. The experiments were executed 
+it was applied to the NAS parallel benchmarks NPB v3.3. The experiments were executed 
 on the simulator SimGrid/SMPI v3.10~\cite{casanova+giersch+legrand+al.2014.versatile} which offers 
 easy tools to create a heterogeneous platform and run message passing applications over it. The 
 heterogeneous platform that was used in the experiments, had one core per node because just one 
@@ -1012,34 +1069,13 @@ results in less energy saving but less performance degradation.
 
 
 
-\subsection{The verifications of the proposed method}
-\label{sec.verif}
-The precision of the proposed algorithm mainly depends on the execution time prediction model defined in 
-EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). 
-The energy model is also significantly dependent  on the execution time model because the static energy is 
-linearly related the execution time and the dynamic energy is related to the computation time. So, all of 
-the work presented in this paper is based on the execution time model. To verify this model, the predicted 
-execution time was compared to  the real execution time over Simgrid for all  the NAS parallel benchmarks 
-running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, 
-the maximum normalized difference between the predicted execution time  and the real execution time is equal 
-to 0.03 for all the NAS benchmarks.
 
-Since  the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) 
-in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm 
-that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
-different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
-and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
-for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in 
-table~(\ref{table:platform}), it takes on average \np[ms]{0.04}  for 4 nodes and \np[ms]{0.15} on average for 144 nodes 
-to compute the best scaling factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number 
-of iterations and $N$ is the number of computing nodes. The algorithm needs  from 12 to 20 iterations to select the best 
-vector of frequency scaling factors that gives the results of the sections (\ref{sec.res}) and (\ref{sec.compare}).
 
 \section{Conclusion}
-\label{sec.concl}
-In this paper, we have presented a new online heterogeneous scaling algorithm
-that selects the best possible vector of frequency scaling factors. This vector 
-gives the maximum distance (optimal tradeoff) between the predicted energy and 
+\label{sec.concl} 
+In this paper, we have presented a new online selecting frequency scaling factors algorithm
+that selects the best possible vector of frequency scaling factors for a heterogeneous platform. 
+This vector gives the maximum distance (optimal tradeoff) between the predicted energy and 
 the predicted performance curves. In addition, we developed a new energy model for measuring  
 and predicting the energy of distributed iterative applications running over heterogeneous 
 cluster. The proposed method evaluated on Simgrid/SMPI  simulator to built a heterogeneous 
index 8bb91bc418532778452c318b3938ad6ea8897630..721155e9f007239e423a023bacb93553013d60a0 100644 (file)
@@ -796,4 +796,6 @@ ISSN={1045-9219},}
 @MISC{U.S_Annual.Energy.Outlook.2014,
   title =        {{U.S. Energy Information Administration, Annual Energy Outlook 2014}},
   url =          {http://www.eia.gov/}
-}
\ No newline at end of file
+}
+
+