]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
small modifs
authorraphael couturier <couturie@extinction>
Mon, 8 Dec 2014 14:57:31 +0000 (15:57 +0100)
committerraphael couturier <couturie@extinction>
Mon, 8 Dec 2014 14:57:31 +0000 (15:57 +0100)
Heter_paper.tex

index 7b52f2136e6190de926bdf373eeeb60eba853a88..c29b2a40b302fc1d68f2a707dd36ab2da9534c32 100644 (file)
@@ -254,7 +254,7 @@ vector of scaling factors can be predicted using (\ref{eq:perf}).
 \end{equation}
 Where:\\
 \begin{equation}
 \end{equation}
 Where:\\
 \begin{equation}
-\label{eq:perf}
+\label{eq:perf2}
  MinTcm = \min_{i=1,2,\dots,N} (Tcm_i)
 \end{equation}
 where $TcpOld_i$ is the computation time  of processor $i$ during the first 
  MinTcm = \min_{i=1,2,\dots,N} (Tcm_i)
 \end{equation}
 where $TcpOld_i$ is the computation time  of processor $i$ during the first 
@@ -435,7 +435,7 @@ time simultaneously.  But the main objective is to produce maximum energy
 reduction with minimum execution time reduction.  
   
 This problem can be solved by making the optimization process for energy and 
 reduction with minimum execution time reduction.  
   
 This problem can be solved by making the optimization process for energy and 
-execution time follow the same direction.  Therefore, the equation of the 
+execution time following the same direction.  Therefore, the equation of the 
 normalized execution time is inverted which gives the normalized performance equation, as follows:
 \begin{multline}
   \label{eq:pnorm_inv}
 normalized execution time is inverted which gives the normalized performance equation, as follows:
 \begin{multline}
   \label{eq:pnorm_inv}
@@ -480,14 +480,14 @@ the energy curve has a convex form as shown in~\cite{Zhuo_Energy.efficient.Dynam
 \label{sec.optim}
 
 \subsection{The algorithm details}
 \label{sec.optim}
 
 \subsection{The algorithm details}
-In this section algorithm \ref{HSA} is presented. It selects the frequency scaling factors 
+In this section, algorithm \ref{HSA} is presented. It selects the frequency scaling factors 
 vector that gives the best trade-off between minimizing the energy consumption  and maximizing 
 the performance of a message passing synchronous iterative application executed on a heterogeneous 
 platform. It works online during the execution time of the iterative message passing program.  
 It uses information gathered during the first iteration such as the computation time and the 
 communication time in one iteration for each node. The algorithm is executed  after the first 
 iteration and returns a vector of optimal frequency scaling factors   that satisfies the objective 
 vector that gives the best trade-off between minimizing the energy consumption  and maximizing 
 the performance of a message passing synchronous iterative application executed on a heterogeneous 
 platform. It works online during the execution time of the iterative message passing program.  
 It uses information gathered during the first iteration such as the computation time and the 
 communication time in one iteration for each node. The algorithm is executed  after the first 
 iteration and returns a vector of optimal frequency scaling factors   that satisfies the objective 
-function (\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs 
+function (\ref{eq:max}). The program applies DVFS operations to change the frequencies of the CPUs 
 according to the computed scaling factors.  This algorithm is called just once during the execution 
 of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called 
 in the iterative MPI program.
 according to the computed scaling factors.  This algorithm is called just once during the execution 
 of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called 
 in the iterative MPI program.
@@ -1033,8 +1033,8 @@ results in less energy saving but less performance degradation.
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
-In this section, the scaling  factors selection algorithm
-is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}. 
+In this section, the scaling  factors selection algorithm, called MaxDist,
+is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, called EDP
 They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
 To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to  start the search from the 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
 They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
 To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to  start the search from the 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.