]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections
authorjean-claude <jean-claude.charr@univ-fcomte.fr>
Thu, 29 Oct 2015 10:39:03 +0000 (11:39 +0100)
committerjean-claude <jean-claude.charr@univ-fcomte.fr>
Thu, 29 Oct 2015 10:39:03 +0000 (11:39 +0100)
mpi-energy2-extension/Heter_paper.tex

index 431c0c76a7df3497ec1e041acf5b2a23a60b15ed..23a0c019eb6bbad2cfd1f5ca6489dd68cda3292a 100644 (file)
@@ -942,8 +942,10 @@ The NAS parallel benchmarks are executed over these two platforms
 The overall energy consumption of all the benchmarks solving the class D instance and
 using the proposed frequency selection algorithm is measured 
 using the equation of the reduced energy consumption, equation 
-(\ref{eq:energy}). This model uses the measured dynamic and static 
-power values  showed in Table \ref{table:grid5000}. The execution
+(\ref{eq:energy}). This model uses the measured dynamic power showed in Table \ref{table:grid5000}
+
+and the static 
+power is assumed to be equal to 20\% of the dynamic power. The execution
 time is measured for all the benchmarks over these different scenarios.  
 
 The energy consumptions  and the execution times for all the benchmarks are 
@@ -1050,8 +1052,8 @@ the participating number of cores from a certain cluster is equal to 14,
 in the multi-core scenario the selected nodes is equal to  4 nodes while using 
 3 or 4 cores from each node. The platforms with one  
 core per node and  multi-cores nodes are  shown in Table \ref{table:sen-mc}. 
-The energy consumptions and execution times of running the class D of the NAS parallel 
-benchmarks over these four different scenarios are presented 
+The energy consumptions and execution times of running  class D of the NAS parallel 
+benchmarks over these two different scenarios are presented 
 in  figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.
 
 \begin{table}[]
@@ -1127,7 +1129,7 @@ in figure \ref{fig:dist-mc}. These  tradeoff distance between energy consumption
 
 
 
-\subsection{Experiments with different static and dynamic powers consumption scenarios}
+\subsection{Experiments with different static power scenarios}
 \label{sec.pow_sen}
 
 In section \ref{sec.grid5000}, since it was not possible to measure the static power consumed by a CPU,   the static power was assumed to be equal to 20\% of the measured dynamic power. This power is consumed during the whole execution time, during computation and communication times. Therefore, when the DVFS operations are applied by the scaling algorithm and the CPUs' frequencies lowered, the execution time might increase and consequently the consumed static energy will be increased too.