- The average of values of these three objectives are plotted to the number of
-nodes as in plots (\ref{fig:avg_eq} and \ref{fig:avg_neq}). In CG, MG, LU, and
-FT benchmarks the average of energy saving is decreased when the number of nodes
-is increased because the communication times is increased as mentioned
-before. Thus, the average of distances (our objective function) is decreased
-linearly with energy saving while keeping the average of performance degradation approximately is
-the same. In BT and SP benchmarks, the average of the energy saving is not decreased
-significantly compare to other benchmarks when the number of nodes is
-increased. Nevertheless, the average of performance degradation approximately
-still the same ratio. This difference is depends on the characteristics of the
-benchmark such as the computations to communications ratio that has.
-
-\textbf{All the previous paragraph should be deleted, we need to talk about it}
+ \textbf{ The energy saving and performance degradation of all benchmarks are plotted to the number of
+nodes as in plots (\ref{fig:energy} and \ref{fig:per_deg}). A shown in the plots, the energy saving percentage of the benchmarks MG, LU, BT and FT is decreased linearly when the the number of nodes increased. While in EP benchmarks the energy saving percentage is approximately the same percentage when the number of computing nodes is increased, because in this benchmarks there is no communications. In the SP benchmarks the energy saving percentage is decreased when it run on a small number of nodes, while this percentage is increased when it runs on a big number of nodes. The energy saving of the GC benchmarks is significantly decreased when the number of nodes is increased, because this benchmarks has more communications compared to other benchmarks. The performance degradation percentage of the benchmarks CG, EP, LU and BT is decreased when they run on a big number of nodes. While in MG benchmarks has a higher percentage of performance degradation when it runs on a big number of nodes. The inverse happen in SP benchmarks has smaller performance degradation percentage when it runs on a big number of nodes.}
+
+