]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some corrections
authorafanfakh <afanfakh@fanfakh.afanfakh>
Wed, 3 Dec 2014 14:57:07 +0000 (15:57 +0100)
committerafanfakh <afanfakh@fanfakh.afanfakh>
Wed, 3 Dec 2014 14:57:07 +0000 (15:57 +0100)
Heter_paper.tex

index c90258e9742b015b3221215a10af65e75639ebb3..88e7fefb305f4507676d09c565160bae31c22930 100644 (file)
@@ -1040,32 +1040,40 @@ They developed a green governor that regularly applies an online frequency selec
  To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al.  algorithm was adapted to  start the search from the 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
 
-Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
-on average it results in 29.76\% energy saving while their algorithm returns just 25.75\%. The average of performance degradation percentage is approximately the same for both algorithms, about 4\%. 
+Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. \textcolor{red}{The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
+on average it is up to 17\% higher for  energy saving compared to their algorithm. The average of performance degradation percentage using our method is higher on average by 3.82\%.} 
 
 For all benchmarks, our algorithm outperforms 
-Spiliopoulos et al. algorithm in term of energy and performance tradeoff, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
-
-
-\begin{table}[h]
- \caption{Comparing the proposed algorithm}
- \centering
-\begin{tabular}{|l|l|l|l|l|l|l|l|}
-\hline
-\multicolumn{2}{|l|}{\multirow{2}{*}{\begin{tabular}[c]{@{}l@{}}Program \\ name\end{tabular}}} & \multicolumn{2}{l|}{Energy saving \%} & \multicolumn{2}{l|}{Perf.  degradation \%} & \multicolumn{2}{l|}{Distance} \\ \cline{3-8} 
-\multicolumn{2}{|l|}{}                                                                         & EDP             & MaxDist          & EDP            & MaxDist           & EDP          & MaxDist        \\ \hline
-\multicolumn{2}{|l|}{CG}                                                                       & 27.58           & 31.25            & 5.82           & 7.12              & 21.76        & 24.13          \\ \hline
-\multicolumn{2}{|l|}{MG}                                                                       & 29.49           & 33.78            & 3.74           & 6.41              & 25.75        & 27.37          \\ \hline
-\multicolumn{2}{|l|}{LU}                                                                       & 19.55           & 28.33            & 0.0            & 0.01              & 19.55        & 28.22          \\ \hline
-\multicolumn{2}{|l|}{EP}                                                                       & 28.40           & 27.04            & 4.29           & 0.49              & 24.11        & 26.55          \\ \hline
-\multicolumn{2}{|l|}{BT}                                                                       & 27.68           & 32.32            & 6.45           & 7.87              & 21.23        & 24.43          \\ \hline
-\multicolumn{2}{|l|}{SP}                                                                       & 20.52           & 24.73            & 5.21           & 2.78              & 15.31         & 21.95         \\ \hline
-\multicolumn{2}{|l|}{FT}                                                                       & 27.03           & 31.02            & 2.75           & 2.54              & 24.28        & 28.48           \\ \hline
-
-\end{tabular}
-\label{table:compare_EDP}
-\end{table}
+Spiliopoulos et al. algorithm in term of energy and performance tradeoff \textcolor{red}{(on average it has up to 21\% of distance)}, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
+
+
 
+\begin{table}[htb]
+  \caption{Comparing the proposed algorithm}
+  % title of Table
+  \centering
+  \begin{tabular}{|*{4}{l|}}
+    \hline
+    Program       & Energy      & Performance        & Distance\%    \\
+    name          & saving\%    & degradation\%      &              \\
+    \hline
+    CG            &13.31               &22.34                   &10.89       \\
+    \hline 
+    MG            &14.55               &71.39                   &6.29        \\
+   \hline
+    EP            &44.4                    &0.0                         &44.42        \\
+   \hline
+    LU            &-4.79               &-88.58                  &10.12     \\
+    \hline
+    BT                   &16.76                &22.33                   &15.07     \\
+   \hline
+    SP                   &20.52                &-46.64                  &43.37      \\
+   \hline
+    FT            &14.76               &-7.64                   &17.3     \\
+\hline 
+  \end{tabular}
+  \label{table:compare_EDP}
+\end{table}
 
 
 \begin{figure}[t]