]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Modified a paragraph
authorjean-claude <jean-claude.charr@univ-fcomte.fr>
Wed, 5 Nov 2014 14:23:24 +0000 (15:23 +0100)
committerjean-claude <jean-claude.charr@univ-fcomte.fr>
Wed, 5 Nov 2014 14:23:24 +0000 (15:23 +0100)
Heter_paper.tex

index c77212ae770cf10dbb0727f606562a7ecdbaaa9d..7416888376c895b4944ab97e4008033a1320ae1d 100644 (file)
@@ -340,7 +340,10 @@ maximum frequency of node $i$  and the computation scaling factor $Scp_i$ as fol
  F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
 \end{equation}
 If the computed initial frequency for a node is not available in the gears of that node, the computed initial frequency is replaced by the nearest available frequency.
-In  figure (\ref{fig:st_freq}), the nodes are  sorted by their computing powers in ascending order and the frequencies of the faster nodes are scaled down according to the computed initial frequency scaling factors. The resulting new frequencies are coloured in blue in  figure (\ref{fig:st_freq}). This set of frequencies can be considered as a higher bound for the search space of the optimal vector of frequencies because selecting frequency scaling factors higher than the higher bound will not improve the performance of the application and it will increase its overall energy consumption. Therefore the frequency selecting factors algorithm starts its search method from these initial frequencies and takes a downward search direction. If the algorithm starts to search from the first frequencies of all nodes, regardless the higher bound frequencies, at each step the predicted performance and energy  are degreased  together, then the best distance be unreachable. This case is similar to homogeneous scaling algorithm when all nodes in the cluster has the same computing power, therefore there is a smaller distance between the performance and the energy curves, while in a heterogeneous cluster the distance is bigger and the energy saving against smaller execution time is higher, as an example see figure~(\ref{fig:r1} and \ref{fig:r2}). The algorithm iterates on all left frequencies, from the higher bound until all nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of  all other nodes by one gear. The new overall energy consumption and execution time are computed according to the new scaling factors. The optimal set of frequency scaling factors is the set that gives the highest distance according to  the objective function EQ(\ref{eq:max}).
+In  figure (\ref{fig:st_freq}), the nodes are  sorted by their computing powers in ascending order and the frequencies of the faster nodes are scaled down according to the computed initial frequency scaling factors. The resulting new frequencies are colored in blue in  figure (\ref{fig:st_freq}). This set of frequencies can be considered as a higher bound for the search space of the optimal vector of frequencies because selecting frequency scaling factors higher than the higher bound will not improve the performance of the application and it will increase its overall energy consumption. Therefore the algorithm that selects the frequency scaling factors starts the search method from these initial frequencies and takes a downward search direction toward lower frequencies. The algorithm iterates on all left frequencies, from the higher bound until all nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of  all other nodes by one gear.
+The new overall energy consumption and execution time are computed according to the new scaling factors. The optimal set of frequency scaling factors is the set that gives the highest distance according to  the objective function EQ(\ref{eq:max}).
+
+The plots~(\ref{fig:r1} and \ref{fig:r2}) illustrate the normalized performance and consumed energy for an application running on a homogeneous platform and a heterogeneous platform respectively while increasing the scaling factors. It can be noticed that in a homogeneous platform the search for the optimal scaling factor should be started from the maximum frequency because the performance and the consumed energy is decreased since  the beginning of the plot. On the other hand, in  the heterogeneous platform the performance is  maintained at the beginning of the plot even if the frequencies of the faster nodes are decreased until the scaled down nodes have computing powers lower than the slowest node. In other words, until they reach the higher bound. It can also be noticed that the higher the difference between the faster nodes and the slower nodes is, the bigger the maximum distance between the energy curve and the performance curve is while varying the scaling factors which results in bigger energy savings. 
 \begin{figure}[t]
   \centering
     \includegraphics[scale=0.5]{fig/start_freq}