]> AND Private Git Repository - predictops.git/blobdiff - predictops/learn/preprocessing.py
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Adding a source module to check for redundancy in feature names.
[predictops.git] / predictops / learn / preprocessing.py
index 5400d1d39f1135ce5e2abcfec2541201cf5d8ed6..a878a8215d83e8cd504ff7f345cbd1c15165a7e7 100644 (file)
@@ -1,8 +1,10 @@
 from configparser import ConfigParser
 from configparser import ConfigParser
+from csv import DictReader
 from datetime import datetime, timedelta
 from itertools import chain
 from logging import getLogger
 from logging.config import fileConfig
 from datetime import datetime, timedelta
 from itertools import chain
 from logging import getLogger
 from logging.config import fileConfig
+from os import listdir
 from pathlib import Path
 
 import numpy as np
 from pathlib import Path
 
 import numpy as np
@@ -46,6 +48,16 @@ class Preprocessing:
         else:
             self._features = set(chain.from_iterable([tuple(u.keys())
                                                       for u in [*dict_features.values()]]))
         else:
             self._features = set(chain.from_iterable([tuple(u.keys())
                                                       for u in [*dict_features.values()]]))
+        for csv_file in listdir():
+            with open(csv_file, "r") as f:
+                reader = DictReader(f, delimiter=',')
+                dico_features = {{row['name']: row['type']  # qualitative (2) or quantitative (1)
+                                    }
+                                for row in reader if row['name'] in self._features}
+
+        self._features = {feat : None for feat in self._features}
+        print(self._features)
+        exit()
 
 
     @property
 
 
     @property
@@ -134,7 +146,11 @@ class Preprocessing:
             elif self._config['PREPROCESSING']['fill_method'] == 'spline':
                 self._dataframe = self._dataframe.interpolate(method='spline',
                                                               order=self._config['PREPROCESSING'].getint('order'))
             elif self._config['PREPROCESSING']['fill_method'] == 'spline':
                 self._dataframe = self._dataframe.interpolate(method='spline',
                                                               order=self._config['PREPROCESSING'].getint('order'))
-            self._dataframe = self._dataframe.fillna(method='bfill')
+
+            # Uncomment this line to fill NaN values at the beginning of the
+            # dataframe. This may not be a good idea, especially for features
+            # that are available only for recent years, e.g., air quality
+            #self._dataframe = self._dataframe.fillna(method='bfill')
 
             self._dataframe = self._dataframe.drop([k.to_pydatetime()
                                                    for k in self._dataframe.T
 
             self._dataframe = self._dataframe.drop([k.to_pydatetime()
                                                    for k in self._dataframe.T