from configparser import ConfigParser
-from csv import DictReader
-from datetime import datetime, timedelta
from itertools import chain
from logging import getLogger
from logging.config import fileConfig
-from os import listdir
from pathlib import Path
from sklearn import preprocessing
fileConfig((Path.cwd() / 'config') / 'logging.cfg')
logger = getLogger()
+
class Preprocessing:
'''
Generate a pandas dataframe from a dictionary of features per datetime, which
- NaN values are then filled with last known values.
'''
- def __init__(self, config_file = None,
- dict_features = None, dict_target = None):
+ def __init__(self, config_file=None,
+ start=None, end=None, timestep=None,
+ dict_features=None, dict_target=None):
'''
Constructor that defines all needed attributes and collects features.
'''
self._config = config_file
- self._start = datetime.strptime(self._config['DATETIME']['start'],
- '%m/%d/%Y %H:%M:%S')
- self._end = datetime.strptime(self._config['DATETIME']['end'],
- '%m/%d/%Y %H:%M:%S')
- self._timestep = timedelta(hours =
- self._config['DATETIME'].getfloat('hourStep'))
+ self._start = start
+ self._end = end
+ self._timestep = timestep
self._dict_features = dict_features
self._dict_target = dict_target
self._datetimes = []
self._features = set(chain.from_iterable([tuple(u.keys())
- for u in [*dict_features.values()]]))
+ for u in [*dict_features.values()]]))
#feature_files = Path.cwd() / 'config' / 'features'
- self._features = {feat : {'numerical': False, 'categorical': False}
+ self._features = {feat: {'numerical': False, 'categorical': False}
for feat in self._features}
for feature in self._config['FEATURES']:
if self._config['FEATURES'][feature]:
feature_file = self._config['FEATURE_CONFIG'][feature]
config = ConfigParser()
- config.read(feature_file)
+ config.read(eval(feature_file))
for section in config:
if config.has_option(section, 'numerical'):
- self._features[section]['numerical'] = config[section].getboolean('numerical')
- self._features[section]['categorical'] = config[section].getboolean('categorical')
+ for feature in self._features:
+ if feature.split('_')[0] == section:
+ self._features[feature]['binary'] = config[section].getboolean('binary')
+ self._features[feature]['categorical'] = config[section].getboolean('categorical')
+ self._features[feature]['numerical'] = config[section].getboolean('numerical')
- self._numerical_columns = [k for k in self._features if self._features[k]['numerical']]
+ self._binary_columns = [k for k in self._features if self._features[k]['binary']]
self._categorical_columns = [k for k in self._features if self._features[k]['categorical']]
-
-
+ self._numerical_columns = [k for k in self._features if self._features[k]['numerical']]
@property
def start(self):
def start(self, x):
self._start = x
-
@property
def end(self):
return self._end
def end(self, x):
self._end = x
-
@property
def timestep(self):
return self._timestep
def timestep(self, x):
self._timestep = x
-
def _fill_dict(self):
'''
Add datetime keys in the dated feature dictionary that are missing. The
while current <= self._end:
self._datetimes.append(current)
if current not in self._dict_features:
- self._dict_features[current] = {feature:np.NaN
+ self._dict_features[current] = {feature: np.NaN
for feature in self._features}
else:
- null_dict = {feature:np.NaN
+ null_dict = {feature: np.NaN
for feature in self._features}
null_dict.update(self._dict_features[current])
self._dict_features[current] = null_dict
current += self._timestep
for k in self._dict_features:
- null_dict = {feature:np.NaN
+ null_dict = {feature: np.NaN
for feature in self._features}
null_dict.update(self._dict_features[k])
self._dict_features[k] = null_dict
self._full_dict = {k: self._dict_features[k]
for k in sorted(self._dict_features.keys())}
-
-
@property
def full_dict(self):
'''
self._fill_dict()
return self._full_dict
-
def _fill_nan(self):
'''
Fill NaN values, either by propagation or by interpolation (linear or splines)
elif self._config['PREPROCESSING']['fill_method'] == 'spline':
self._dataframe[self._numerical_columns] =\
self._dataframe[self._numerical_columns].interpolate(method='spline',
- order=self._config['PREPROCESSING'].getint('order'))
+ order=self._config['PREPROCESSING'].getint('order'))
# For the categorical columns, NaN values are filled by duplicating
# the last known value (forward fill method)
self._dataframe = self._dataframe.drop(['row_ok'], axis=1)
logger.info("Rows dropped")
-
def _add_history(self):
'''
Integrating previous nb of interventions as features
'''
logger.info("Integrating previous nb of interventions as features")
- nb_lines = self._config['HISTORY_KNOWLEDGE'].getint('nb_lines')
- for k in range(1,nb_lines+1):
- name = 'history_'+str(nb_lines-k+1)
- self._dataframe[name] = [np.NaN]*k + list(self._dict_target.values())[:-k]
+ nb_lines = eval(self._config['HISTORY_KNOWLEDGE']['nb_lines'])
+ for k in range(1, nb_lines + 1):
+ name = 'history_' + str(nb_lines - k + 1)
+ self._dataframe[name] = [np.NaN] * k + list(self._dict_target.values())[:-k]
self._numerical_columns.append(name)
self._dataframe = self._dataframe[nb_lines:]
-
-
def _standardize(self):
'''
Normalizing numerical features
self._dataframe[self._numerical_columns] =\
preprocessing.scale(self._dataframe[self._numerical_columns])
-
-
def _one_hot_encoding(self):
'''
Apply a one hot encoding for category features
'''
logger.info("One hot encoding for categorical feature")
-
# We store numerical columns
+
df_out = pd.DataFrame()
- for col in self._numerical_columns:
+ for col in self._numerical_columns:
+ df_out[col] = self._dataframe[col]
+ # Idem for binary features
+ for col in self._binary_columns:
df_out[col] = self._dataframe[col]
# The one hot encoding
for col in self._categorical_columns:
- pd1 = pd.get_dummies(self._dataframe[col],prefix=col)
+ pd1 = pd.get_dummies(self._dataframe[col], prefix=col)
for col1 in pd1.columns:
df_out[col1] = pd1[col1]
self._dataframe = df_out
-
@property
def dataframe(self):
'''
self._fill_nan()
# Adding previous (historical) nb_interventions as features
self._add_history()
+ # self._dataframe.to_csv('toto.csv')
+ # exit()
# Normalizing numerical values
self._standardize()
# Dealing with categorical features
self._one_hot_encoding()
return self._dataframe
-
@dataframe.setter
def dataframe(self, df):
self._dataframe = df