self._features = set(chain.from_iterable([tuple(u.keys())
for u in [*dict_features.values()]]))
- feature_files = Path.cwd() / 'config' / 'features'
- self._features = {feat : {'numerical': False} for feat in self._features}
- for feature_file in listdir(feature_files):
- if feature_file.endswith('csv'):
- with open(feature_files / feature_file , "r") as f:
- reader = DictReader(f, delimiter=',')
- typed_names = {row['name']: row['type'] for row in reader}
- for feature in self._features:
- if feature.split('_')[0] in typed_names:
- self._features[feature]['type'] = int(typed_names[feature.split('_')[0]])
- elif feature_file.endswith('cfg'):
+ #feature_files = Path.cwd() / 'config' / 'features'
+ self._features = {feat : {'numerical': False, 'categorical': False}
+ for feat in self._features}
+
+ for feature in self._config['FEATURES']:
+ if self._config['FEATURES'][feature]:
+ feature_file = self._config['FEATURE_CONFIG'][feature]
config = ConfigParser()
- config.read(feature_files / feature_file)
+ config.read(feature_file)
for section in config:
if config.has_option(section, 'numerical'):
self._features[section]['numerical'] = config[section].getboolean('numerical')
+ self._features[section]['categorical'] = config[section].getboolean('categorical')
- self._numerical_columns = [k for k in self._features if self._features[k]['type'] == 1
- or (self._features[k]['type'] == 3 and self._features[k]['numerical'])]
-
- self._categorical_columns = [k for k in self._features if self._features[k]['type'] == 2
- or (self._features[k]['type'] == 3 and not self._features[k]['numerical'])]
+ self._numerical_columns = [k for k in self._features if self._features[k]['numerical']]
+ self._categorical_columns = [k for k in self._features if self._features[k]['categorical']]
# Dropping rows that are not related to our datetime window (start/
# step / end)
- self._dataframe = self._dataframe.drop([k.to_pydatetime()
- for k in self._dataframe.T
- if k not in self._datetimes])
+ logger.info("Dropping rows that are not related to our datetime window")
+ dates = tuple((x.year, x.month, x.day, x.hour) for x in self._datetimes)
+ self._dataframe['row_ok'] =\
+ self._dataframe.apply(lambda x: (int(x.year), int(x.month), int(x.dayInMonth), int(x.hour)) in dates, axis=1)
+ self._dataframe = self._dataframe[self._dataframe['row_ok']]
+ self._dataframe = self._dataframe.drop(['row_ok'], axis=1)
+ logger.info("Rows dropped")
def _add_history(self):
'''
logger.info("Integrating previous nb of interventions as features")
nb_lines = self._config['HISTORY_KNOWLEDGE'].getint('nb_lines')
- print(len(self._dataframe))
- print(self._dataframe.head(4))
for k in range(1,nb_lines+1):
name = 'history_'+str(nb_lines-k+1)
self._dataframe[name] = [np.NaN]*k + list(self._dict_target.values())[:-k]
self._numerical_columns.append(name)
self._dataframe = self._dataframe[nb_lines:]
- print(self._dataframe.head(4))
- print(len(self._dataframe))