3 \usepackage{beamerthemefemto}
5 \usepackage[latin1]{inputenc}
6 \usepackage[T1]{fontenc}
7 \usepackage{amsfonts,amsmath,amssymb,stmaryrd}
8 \usepackage[frenchb]{babel}
12 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
15 \title{Parallelization and optimization \\
16 of the neuromorphic simulation code.
17 Application on the MNIST problem}
19 \author{Rapha\"el Couturier, {\bf Michel Salomon}}
21 \institute[FEMTO-ST Institute]{\textit{FEMTO-ST - DISC Department - AND Team}}
23 \date{November 2 \& 3, 2015 / Besançon \\
24 Dynamical Systems and Brain-inspired Information Processing Workshop}
26 % ____ _____ ____ _ _ _____
27 % | _ \| ____| __ )| | | |_ _|
28 % | | | | _| | _ \| | | | | |
29 % | |_| | |___| |_) | |_| | | |
30 % |____/|_____|____/ \___/ |_|
34 \setbeamertemplate{background}{\titrefemto}
40 \setbeamertemplate{background}{\pagefemto}
42 \begin{frame}{Introduction} % Slide 1
43 % 1 - Photonic implementation of reservoir computing through NLDDE in Laurent's team
45 % -> Success of reservoir computing
46 % -> Hardware implementation allowing fast processing
47 % 3 - Simulation by a Matlab code - pre and post-processing by computer
48 % -> Drawback = redhibitory computation time
52 \item Emergence of hardware RC implementation
54 Analogue electronic; {\bf optoelectronic}; fully optical
56 {\scriptsize Larger {\em et al.} - {\it Photonic information processing beyond Turing: an optoelectronic
57 implementation of reservoir computing}, Opt. Express 20, 3241-3249 (2012)}
60 \item Study processing conditions
61 \item Tuning parameters
62 \item Pre and post-processing by computer
70 \item Study the concept of Reservoir Computing
71 \item Design a faster simulation code
72 \item Apply it to a new problem
77 \begin{frame}{Outline}
78 \setbeamertemplate{section in toc}[sections numbered]
82 \section{Neuromorphic processing}
84 \begin{frame}{Delay Dynamics as a Reservoir} % Slide 2
86 % Reprendre le schema de la figure 2 du pdf NTC de Laurent
87 {Spatio-temporal viewpoint of a DDE ({\NoAutoSpaceBeforeFDP \tiny Larger {\em et al.} - Opt. Express 20:3 2012})\\}
89 \includegraphics[width=7.5cm]{ntc.png}
91 \item $\delta_t \rightarrow \mbox{temporal spacing}; \tau_D \rightarrow \mbox{time delay}$
92 \item $f(x) \rightarrow \mbox{nonlinear transformation}; h(t) \rightarrow \mbox{impulse response}$
95 % Slide 21 + equation a retard du NTC
97 {Computer simulation with an Ikeda type NLDDE}
99 \tau \frac{dx}{dt}(t)=-x(t)+\beta \sin^2 [\alpha\,x(t-\tau_D)+\rho\,u_{\mbox{in}}(t-\tau_D)+\Phi_0]
102 $\alpha \rightarrow \mbox{feedback scaling}; \beta \rightarrow \mbox{gain}; \rho \rightarrow \mbox{amplification};
103 \Phi_0 \rightarrow \mbox{offset}$
107 \begin{frame}{Photonic Reservoir Computing} % Slide 3
109 {Optoelectronic setup ({\NoAutoSpaceBeforeFDP \tiny Larger~{\em et al.}~-~Opt.~Express~20:3~2012})\\}
112 \includegraphics[width=7.5cm]{photonic-RC.png}
116 {Spoken digits recognition task}
118 \item Input data $\rightarrow$ {\small matrix obtained by Lyon ear model transformation}
119 \item Output data $\rightarrow$ {\small matrix describing the spoken digit}
124 \begin{frame}{Spoken Digits Recognition} % Slide 4
126 {Input (pre-processing) \\}
128 \item Lyon ear model transformation \\
129 $\rightarrow$ 60 samples $\times$ 86 frequency channels
130 \item Channels connection to reservoir (400 neurons) \\
131 $\rightarrow$ sparse and random
134 \includegraphics[width=7.5cm]{sdr.png}
137 {Reservoir transient response\\}
140 Temporal series recorded for Read-Out processing
144 \begin{frame}{Spoken Digits Recognition} % Slide 5
146 {Output (post-processing)\\}
148 \item Training of the Read-Out \\
149 $\rightarrow$ optimize $W^R$ matrix for the digits of the training set
150 \item Regression problem for $A \times W^R \approx B$
153 W^R_{\mbox{opt}}=\left(A^TA - \lambda I\right)^{-1} A^T B
157 \item $A$ = concatenates reservoir transient response for each digit
158 \item $B$ = concatenates target matrices
165 \item Dataset of 500 speech samples $\rightarrow$ 5 female speakers
166 \item 20-fold cross-validation $\rightarrow$ 20 $\times$ 25 test samples
167 \item Performance evaluation $\rightarrow$ {\bf W}ord {\bf E}rror {\bf R}ate
172 \begin{frame}{Matlab Simulation Code} % Slide 7
173 % Grandes lignes a partir du pdf de Laurent
177 % Inconvenient de ce code => temps de calcul
183 \section{Parallelization and optimization}
185 \begin{frame}{Parallelization Scheme} % Slide 8
186 % 1 - Comment le paralleliser
187 % 2 - Langage et bibliotheque
190 \begin{frame}{Finding the Optimal Parameters} % Slide 9
191 % 1 - Quels parametres et pourquoi ?
194 \begin{frame}{Finding the Optimal Parameters} % Slide 10
195 % 2 - Optimisation par recuit simule
198 \begin{frame}{Performances} % Slide 11
199 % 1 - Taux d'erreur en terme de classification
200 % 2 - Gain en temps d'execution / speedup curve
203 \section{Performances on the MNIST problem}
205 \begin{frame}{Application on the MNIST problem} % Slide 12
206 % 1 - Decrire ce qu'est le MNIST
207 % 2 - Setup de notre reservoir
210 \begin{frame}{Comparison with other approaches} % Slide 13
211 % 1 - Convolutional Neural Networks
212 % 2 - Reservoir en pipeline (papier de 2015)
215 \begin{frame}{Comparison with other approaches} % Slide 14
216 % Tableau recapitulant les performances
219 \section{Conclusion and perspectives}
221 \begin{frame}{Conclusion and perspectives} % Slide 15
225 \begin{frame}{Thank you for your attention}
231 %\begin{frame}{Titre du slide}
234 % {Ceci est un femtoBlock\\}
235 % Et ici le texte dans le femtoBlock
238 % \item deuxième item
242 % {Autre femtoBlock\\}
252 %\begin{frame}{Autre titre}
255 % {Utilisation possible de block (standard)\\}
257 % \begin{block}{Titre du block}
258 % texte contenu dans le block