1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[T1]{fontenc}
10 \usepackage[standard]{ntheorem}
12 % Pour mathds : les ensembles IR, IN, etc.
15 % Pour avoir des intervalles d'entiers
19 % Pour faire des sous-figures dans les figures
20 \usepackage{subfigure}
24 \newtheorem{notation}{Notation}
26 \newcommand{\X}{\mathcal{X}}
27 \newcommand{\Go}{G_{f_0}}
28 \newcommand{\B}{\mathds{B}}
29 \newcommand{\N}{\mathds{N}}
30 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
33 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
35 \title{Efficient generation of pseudo random numbers based on chaotic iterations on GPU}
43 \section{Introduction}
45 Interet des itérations chaotiques pour générer des nombre alea\\
46 Interet de générer des nombres alea sur GPU
49 \section{Chaotic iterations}
51 Présentation des itérations chaotiques
55 \subsection{The phase space is an interval of the real line}
57 \subsubsection{Toward a topological semiconjugacy}
59 In what follows, our intention is to establish, by using a topological semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as iterations on a real interval. To do so, we must firstly introduce some notations and terminologies.
61 Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket 1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N} \times \B^\mathsf{N}$.
65 The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[ 0, 2^{10} \big[$ is defined by:
68 \varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}& \longrightarrow & \big[ 0, 2^{10} \big[ \\
69 & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto & \varphi \left((S,E)\right)
72 \noindent where $\varphi\left((S,E)\right)$ is the real number:
74 \item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
75 \item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots = \sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$
81 $\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic iterations $\Go$ on this real interval. To do so, two intermediate functions over $\big[ 0, 2^{10} \big[$ must be introduced:
86 Let $x \in \big[ 0, 2^{10} \big[$ and:
88 \item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$: $\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
89 \item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal decomposition of $x$ is the one that does not have an infinite number of 9:
90 $\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
92 $e$ and $s$ are thus defined as follows:
95 e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
96 & x & \longmapsto & (e_0, \hdots, e_9)
102 s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9 \rrbracket^{\mathds{N}} \\
103 & x & \longmapsto & (s^k)_{k \in \mathds{N}}
108 We are now able to define the function $g$, whose goal is to translate the chaotic iterations $\Go$ on an interval of $\mathds{R}$.
111 $g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
114 g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
116 & x & \longmapsto & g(x)
119 \noindent where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
121 \item its integral part has a binary decomposition equal to $e_0', \hdots, e_9'$, with:
125 e(x)_i & \textrm{ if } i \neq s^0\\
126 e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
130 \item whose decimal part is $s(x)^1, s(x)^2, \hdots$
137 In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + \sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then: $$g(x) = \displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + \sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}.$$
139 \subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
141 Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most usual one being the Euclidian distance recalled bellow:
144 \index{distance!euclidienne}
145 $\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is, $\Delta(x,y) = |y-x|^2$.
150 This Euclidian distance does not reproduce exactly the notion of proximity induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$. This is the reason why we have to introduce the following metric:
155 Let $x,y \in \big[ 0, 2^{10} \big[$.
156 $D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$ defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$, where:
158 $\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k, \check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty \dfrac{|S^k-\check{S}^k|}{10^k}}$.
163 $D$ is a distance on $\big[ 0, 2^{10} \big[$.
167 The three axioms defining a distance must be checked.
169 \item $D \geqslant 0$, because everything is positive in its definition. If $D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal (they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then $\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
170 \item $D(x,y)=D(y,x)$.
171 \item Finally, the triangular inequality is obtained due to the fact that both $\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
176 The convergence of sequences according to $D$ is not the same than the usual convergence related to the Euclidian metric. For instance, if $x^n \to x$ according to $D$, then necessarily the integral part of each $x^n$ is equal to the integral part of $x$ (at least after a given threshold), and the decimal part of $x^n$ corresponds to the one of $x$ ``as far as required''.
177 To illustrate this fact, a comparison between $D$ and the Euclidian distance is given Figure \ref{fig:comparaison de distances}. These illustrations show that $D$ is richer and more refined than the Euclidian distance, and thus is more precise.
182 \subfigure[Function $x \to dist(x;1,234) $ on the interval $(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
183 \subfigure[Function $x \to dist(x;3) $ on the interval $(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
185 \caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
186 \label{fig:comparaison de distances}
192 \subsubsection{The semiconjugacy}
194 It is now possible to define a topological semiconjugacy between $\mathcal{X}$ and an interval of $\mathds{R}$:
197 Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on $\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
200 \left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>> \left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
201 @V{\varphi}VV @VV{\varphi}V\\
202 \left( ~\big[ 0, 2^{10} \big[, D~\right) @>>g> \left(~\big[ 0, 2^{10} \big[, D~\right)
208 $\varphi$ has been constructed in order to be continuous and onto.
211 In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N} \big[$.
218 \subsection{Study of the chaotic iterations described as a real function}
223 \subfigure[ICs on the interval $(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
224 \subfigure[ICs on the interval $(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
225 \subfigure[ICs on the interval $(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
226 \subfigure[ICs on the interval $(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
228 \caption{Representation of the chaotic iterations.}
237 \subfigure[ICs on the interval $(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
238 \subfigure[ICs on the interval $(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
240 \caption{ICs on small intervals.}
246 \subfigure[ICs on the interval $(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
247 \subfigure[ICs on the interval $(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
249 \caption{General aspect of the chaotic iterations.}
254 We have written a Python program to represent the chaotic iterations with the vectorial negation on the real line $\mathds{R}$. Various representations of these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}. It can be remarked that the function $g$ is \alert{affine par morceaux}: it is linear on each interval having the form $\left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ \alert{and its line has a pent equal to 10}. Let us justify these claims:
257 \label{Prop:derivabilite des ICs}
258 Chaotic iterations $g$ defined on $\mathds{R}$ are \alert{infiniment dérivables} on $\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{ \dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
260 Furthermore, on each interval of the form $\left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$, the function $g$ is \emph{affine}. \alert{It is a line of pent equal to 10}: $\forall x \notin I, g'(x)=10$.
265 Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral prat $e$ and the same decimal part $s^0$: on the set $I_n$, functions $e(x)$ and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all the images $g(x)$ of these points $x$:
267 \item Have the same integral part, which is $e$, except probably the bit number $s^0$. In other words, this integer has approximately the same binary decomposition than $e$, the sole exception being the digit $s^0$ (this number is then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$, \emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
268 \item A shift to the left has been applied to the decimal part $y$, losing by doing so the common first digit $s^0$. In other words, $y$ has been mapped into $10\times y - s^0$.
270 To sum up, the action of $g$ on the points of $I$ is as follows: first, make a multiplication by 10, and second, add the same constant to each term, which is $\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
274 Finally, chaotic iterations are elements of the large family of functions that are \alert{chaotiques linéaires par morceaux}, like the tent map, the \alert{doublement de l'angle}, \emph{etc.}
279 \subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
281 The two propositions bellow allow to compare our two distances on $\big[ 0, 2^\mathsf{N} \big[$:
284 Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0, 2^\mathsf{N} \big[, D~\right)$ is not continuous.
288 The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is such that:
290 \item $\Delta (x^n,2) \to 0.$
291 \item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
294 The sequential characterization of the continuity concludes the demonstration.
302 Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0, 2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction.
306 If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given threshold, because $D_e$ only returns integers. So, after this threshold, the integral parts of all the $x^n$ are equal to the integral part of $x$.
308 Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k \in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This means that for all $k$, an index $N_k$ can be found such that, $\forall n \geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the result.
311 The conclusion of these propositions is that the proposed metric is more \alert{précise} than the Euclidian distance, that is:
314 $D$ is finer than the Euclidian distance $\Delta$.
317 This corollary can be reformulated as follows:
320 \item The topology produced by $\Delta$ is a subset of the topology produced by $D$.
321 \item $D$ has more open sets than $\Delta$.
322 \item It is harder to converge for the topology $\tau_D$ inherited by $D$, than to converge with the one inherited by $\Delta$, which is denoted here by $\tau_\Delta$.
326 \subsection{Chaos of the chaotic iterations on $\mathds{R}$}
327 \label{chpt:Chaos des itérations chaotiques sur R}
331 \subsubsection{Chaos according to Devaney}
333 We have recalled previously that the chaotic iterations $\left(\Go, \mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We can deduce that they are chaotic on $\mathds{R}$ too, when considering the \alert{topology of order}, because:
335 \item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10} \big[_D\right)$ are semiconjugate by $\varphi$,
336 \item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic according to Devaney, because the semiconjugacy preserve this character.
337 \item But the topology generated by $D$ is finer than the topology generated by the Euclidian distance $\Delta$ -- which is the \alert{topology of order}.
338 \item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the \alert{topology of order} on $\mathds{R}$.
341 This result can be formulated as follows.
344 \label{th:IC et topologie de l'ordre}
345 The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the \alert{topology of order}.
348 Indeed this result is \alert{weaker} than the theorem establishing the chaos for the finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre} still remains important. Indeed, we have studied in our previous works a set different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$), in order to be as close as possible from the computer: the properties of disorder proved theoretically will then be preserved when computing. However, we could wonder whether this change does not lead to a disorder of a lower quality. In other words, have we replaced a situation of a good disorder lost when computing, to another situation of a disorder preserved but of bad quality. Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
353 \section{Efficient prng based on chaotic iterations}
355 On parle du séquentiel avec des nombres 64 bits\\
357 Faire le lien avec le paragraphe précédent (je considère que la stratégie s'appelle $S^i$\\
359 In order to implement efficiently a PRNG based on chaotic iterations it is
360 possible to improve previous works [ref]. One solution consists in considering
361 that the strategy used $S^i$ contains all the bits for which the negation is
362 achieved out. Then instead of applying the negation on these bits we can simply
363 apply the xor operator between the current number and the strategy $S^i$. In
364 order to obtain the strategy we also use a classical PRNG.
369 \begin{minipage}{14cm}
370 unsigned int CIprng() \{\\
371 static unsigned int x = 123123123;\\
372 unsigned long t1 = xorshift();\\
373 unsigned long t2 = xor128();\\
374 unsigned long t3 = xorwow();\\
375 x = x\textasciicircum (unsigned int)t1;\\
376 x = x\textasciicircum (unsigned int)(t2$>>$32);\\
377 x = x\textasciicircum (unsigned int)(t3$>>$32);\\
378 x = x\textasciicircum (unsigned int)t2;\\
379 x = x\textasciicircum (unsigned int)(t1$>>$32);\\
380 x = x\textasciicircum (unsigned int)t3;\\
386 \caption{sequential Chaotic Iteration PRNG}
387 \label{algo:seqCIprng}
390 In Figure~\ref{algo:seqCIprng} a sequential version of our chaotic iterations
391 based PRNG is presented. This version uses three classical 64 bits PRNG: the
392 \texttt{xorshift}, the \texttt{xor128} and the \texttt{xorwow}. These three
393 PRNGs are presented in~\cite{Marsaglia2003}. As each PRNG used works with
394 64-bits and as our PRNG works with 32 bits, the use of \texttt{(unsigned int)}
395 selects the 32 least significant bits whereas \texttt{(unsigned int)(t3$>>$32)}
396 selects the 32 most significants bits of the variable \texttt{t}. This version
397 sucesses the BigCrush of the TestU01 battery [P. L’ecuyer and
400 \section{Efficient prng based on chaotic iterations on GPU}
402 On parle du passage du sequentiel au GPU
404 \section{Experiments}
406 On passe le BigCrush\\
407 On donne des temps de générations sur GPU/CPU\\
408 On donne des temps de générations de nombre sur GPU puis on rappatrie sur CPU / CPU ? bof bof, on verra
412 \bibliographystyle{plain}
413 \bibliography{mabase}